A survey on the computation offloading approaches in mobile edge computing: A machine learning-based perspective

A Shakarami, M Ghobaei-Arani, A Shahidinejad - Computer Networks, 2020 - Elsevier
With the rapid developments in emerging mobile technologies, utilizing resource-hungry
mobile applications such as media processing, online Gaming, Augmented Reality (AR) …

Applications of deep reinforcement learning in communications and networking: A survey

NC Luong, DT Hoang, S Gong, D Niyato… - … surveys & tutorials, 2019 - ieeexplore.ieee.org
This paper presents a comprehensive literature review on applications of deep
reinforcement learning (DRL) in communications and networking. Modern networks, eg …

Edge intelligence: The confluence of edge computing and artificial intelligence

S Deng, H Zhao, W Fang, J Yin… - IEEE Internet of …, 2020 - ieeexplore.ieee.org
Along with the rapid developments in communication technologies and the surge in the use
of mobile devices, a brand-new computation paradigm, edge computing, is surging in …

Deep reinforcement learning for Internet of Things: A comprehensive survey

W Chen, X Qiu, T Cai, HN Dai… - … Surveys & Tutorials, 2021 - ieeexplore.ieee.org
The incumbent Internet of Things suffers from poor scalability and elasticity exhibiting in
communication, computing, caching and control (4Cs) problems. The recent advances in …

Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks

L Huang, S Bi, YJA Zhang - IEEE Transactions on Mobile …, 2019 - ieeexplore.ieee.org
Wireless powered mobile-edge computing (MEC) has recently emerged as a promising
paradigm to enhance the data processing capability of low-power networks, such as …

Multi-agent DRL for task offloading and resource allocation in multi-UAV enabled IoT edge network

AM Seid, GO Boateng, B Mareri… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
The Internet of Things (IoT) edge network has connected lots of heterogeneous smart
devices, thanks to unmanned aerial vehicles (UAVs) and their groundbreaking emerging …

Privacy-preserved federated learning for autonomous driving

Y Li, X Tao, X Zhang, J Liu, J Xu - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
In recent years, the privacy issue in Vehicular Edge Computing (VEC) has gained a lot of
concern. The privacy problem is even more severe in autonomous driving business than the …

A gentle introduction to reinforcement learning and its application in different fields

M Naeem, STH Rizvi, A Coronato - IEEE access, 2020 - ieeexplore.ieee.org
Due to the recent progress in Deep Neural Networks, Reinforcement Learning (RL) has
become one of the most important and useful technology. It is a learning method where a …

Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning

X Chen, H Zhang, C Wu, S Mao, Y Ji… - IEEE Internet of Things …, 2018 - ieeexplore.ieee.org
To improve the quality of computation experience for mobile devices, mobile-edge
computing (MEC) is a promising paradigm by providing computing capabilities in close …

Resource allocation based on deep reinforcement learning in IoT edge computing

X **ong, K Zheng, L Lei, L Hou - IEEE Journal on Selected …, 2020 - ieeexplore.ieee.org
By leveraging mobile edge computing (MEC), a huge amount of data generated by Internet
of Things (IoT) devices can be processed and analyzed at the network edge. However, the …