Dynamic mode decomposition and its variants
PJ Schmid - Annual Review of Fluid Mechanics, 2022 - annualreviews.org
Dynamic mode decomposition (DMD) is a factorization and dimensionality reduction
technique for data sequences. In its most common form, it processes high-dimensional …
technique for data sequences. In its most common form, it processes high-dimensional …
Modern Koopman theory for dynamical systems
The field of dynamical systems is being transformed by the mathematical tools and
algorithms emerging from modern computing and data science. First-principles derivations …
algorithms emerging from modern computing and data science. First-principles derivations …
[BOOK][B] Data-driven science and engineering: Machine learning, dynamical systems, and control
SL Brunton, JN Kutz - 2022 - books.google.com
Data-driven discovery is revolutionizing how we model, predict, and control complex
systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and …
systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and …
[BOOK][B] Dynamic mode decomposition: data-driven modeling of complex systems
The integration of data and scientific computation is driving a paradigm shift across the
engineering, natural, and physical sciences. Indeed, there exists an unprecedented …
engineering, natural, and physical sciences. Indeed, there exists an unprecedented …
Modal analysis of fluid flows: An overview
SIMPLE aerodynamic configurations under even modest conditions can exhibit complex
flows with a wide range of temporal and spatial features. It has become common practice in …
flows with a wide range of temporal and spatial features. It has become common practice in …
Control of soft robots with inertial dynamics
Soft robots promise improved safety and capability over rigid robots when deployed near
humans or in complex, delicate, and dynamic environments. However, infinite degrees of …
humans or in complex, delicate, and dynamic environments. However, infinite degrees of …
Formulas for data-driven control: Stabilization, optimality, and robustness
C De Persis, P Tesi - IEEE Transactions on Automatic Control, 2019 - ieeexplore.ieee.org
In a paper by Willems et al., it was shown that persistently exciting data can be used to
represent the input-output behavior of a linear system. Based on this fundamental result, we …
represent the input-output behavior of a linear system. Based on this fundamental result, we …
Survey of multifidelity methods in uncertainty propagation, inference, and optimization
In many situations across computational science and engineering, multiple computational
models are available that describe a system of interest. These different models have varying …
models are available that describe a system of interest. These different models have varying …
Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control
This paper presents a class of linear predictors for nonlinear controlled dynamical systems.
The basic idea is to lift (or embed) the nonlinear dynamics into a higher dimensional space …
The basic idea is to lift (or embed) the nonlinear dynamics into a higher dimensional space …
Modal analysis of fluid flows: Applications and outlook
THE field of fluid mechanics involves a range of rich and vibrant problems with complex
dynamics stemming from instabilities, nonlinearities, and turbulence. The analysis of these …
dynamics stemming from instabilities, nonlinearities, and turbulence. The analysis of these …