NTIRE 2023 challenge on image super-resolution (x4): Methods and results
This paper reviews the NTIRE 2023 challenge on image super-resolution (x4), focusing on
the proposed solutions and results. The task of image super-resolution (SR) is to generate a …
the proposed solutions and results. The task of image super-resolution (SR) is to generate a …
Attention mechanism in intelligent fault diagnosis of machinery: A review of technique and application
Attention Mechanism has become very popular in the field of mechanical fault diagnosis in
recent years and has become an important technique for scholars to study and apply. The …
recent years and has become an important technique for scholars to study and apply. The …
Dual aggregation transformer for image super-resolution
Transformer has recently gained considerable popularity in low-level vision tasks, including
image super-resolution (SR). These networks utilize self-attention along different …
image super-resolution (SR). These networks utilize self-attention along different …
Efficient and explicit modelling of image hierarchies for image restoration
The aim of this paper is to propose a mechanism to efficiently and explicitly model image
hierarchies in the global, regional, and local range for image restoration. To achieve that, we …
hierarchies in the global, regional, and local range for image restoration. To achieve that, we …
Restormer: Efficient transformer for high-resolution image restoration
Since convolutional neural networks (CNNs) perform well at learning generalizable image
priors from large-scale data, these models have been extensively applied to image …
priors from large-scale data, these models have been extensively applied to image …
Efficient long-range attention network for image super-resolution
Recently, transformer-based methods have demonstrated impressive results in various
vision tasks, including image super-resolution (SR), by exploiting the self-attention (SA) for …
vision tasks, including image super-resolution (SR), by exploiting the self-attention (SA) for …
Swinir: Image restoration using swin transformer
Image restoration is a long-standing low-level vision problem that aims to restore high-
quality images from low-quality images (eg, downscaled, noisy and compressed images) …
quality images from low-quality images (eg, downscaled, noisy and compressed images) …
Deep generalized unfolding networks for image restoration
Deep neural networks (DNN) have achieved great success in image restoration. However,
most DNN methods are designed as a black box, lacking transparency and interpretability …
most DNN methods are designed as a black box, lacking transparency and interpretability …
Learning enriched features for fast image restoration and enhancement
Given a degraded input image, image restoration aims to recover the missing high-quality
image content. Numerous applications demand effective image restoration, eg …
image content. Numerous applications demand effective image restoration, eg …
Uformer: A general u-shaped transformer for image restoration
In this paper, we present Uformer, an effective and efficient Transformer-based architecture
for image restoration, in which we build a hierarchical encoder-decoder network using the …
for image restoration, in which we build a hierarchical encoder-decoder network using the …