Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Large language models on graphs: A comprehensive survey
Large language models (LLMs), such as GPT4 and LLaMA, are creating significant
advancements in natural language processing, due to their strong text encoding/decoding …
advancements in natural language processing, due to their strong text encoding/decoding …
Large language models for forecasting and anomaly detection: A systematic literature review
This systematic literature review comprehensively examines the application of Large
Language Models (LLMs) in forecasting and anomaly detection, highlighting the current …
Language Models (LLMs) in forecasting and anomaly detection, highlighting the current …
[PDF][PDF] Retrieval-augmented generation for large language models: A survey
Y Gao, Y **ong, X Gao, K Jia, J Pan, Y Bi… - arxiv preprint arxiv …, 2023 - simg.baai.ac.cn
Large language models (LLMs) demonstrate powerful capabilities, but they still face
challenges in practical applications, such as hallucinations, slow knowledge updates, and …
challenges in practical applications, such as hallucinations, slow knowledge updates, and …
Unifying large language models and knowledge graphs: A roadmap
Large language models (LLMs), such as ChatGPT and GPT4, are making new waves in the
field of natural language processing and artificial intelligence, due to their emergent ability …
field of natural language processing and artificial intelligence, due to their emergent ability …
[PDF][PDF] From local to global: A graph rag approach to query-focused summarization
The use of retrieval-augmented generation (RAG) to retrieve relevant information from an
external knowledge source enables large language models (LLMs) to answer questions …
external knowledge source enables large language models (LLMs) to answer questions …
Graph neural prompting with large language models
Large language models (LLMs) have shown remarkable generalization capability with
exceptional performance in various language modeling tasks. However, they still exhibit …
exceptional performance in various language modeling tasks. However, they still exhibit …
Graph retrieval-augmented generation: A survey
Recently, Retrieval-Augmented Generation (RAG) has achieved remarkable success in
addressing the challenges of Large Language Models (LLMs) without necessitating …
addressing the challenges of Large Language Models (LLMs) without necessitating …
Graph prompt learning: A comprehensive survey and beyond
Artificial General Intelligence (AGI) has revolutionized numerous fields, yet its integration
with graph data, a cornerstone in our interconnected world, remains nascent. This paper …
with graph data, a cornerstone in our interconnected world, remains nascent. This paper …
Graphreader: Building graph-based agent to enhance long-context abilities of large language models
Long-context capabilities are essential for large language models (LLMs) to tackle complex
and long-input tasks. Despite numerous efforts made to optimize LLMs for long contexts …
and long-input tasks. Despite numerous efforts made to optimize LLMs for long contexts …
Can we soft prompt LLMs for graph learning tasks?
Graph plays an important role in representing complex relationships in real-world
applications such as social networks, biological data and citation networks. In recent years …
applications such as social networks, biological data and citation networks. In recent years …