Algorithmic fairness in artificial intelligence for medicine and healthcare
In healthcare, the development and deployment of insufficiently fair systems of artificial
intelligence (AI) can undermine the delivery of equitable care. Assessments of AI models …
intelligence (AI) can undermine the delivery of equitable care. Assessments of AI models …
Bias mitigation for machine learning classifiers: A comprehensive survey
This article provides a comprehensive survey of bias mitigation methods for achieving
fairness in Machine Learning (ML) models. We collect a total of 341 publications concerning …
fairness in Machine Learning (ML) models. We collect a total of 341 publications concerning …
A survey on the fairness of recommender systems
Recommender systems are an essential tool to relieve the information overload challenge
and play an important role in people's daily lives. Since recommendations involve …
and play an important role in people's daily lives. Since recommendations involve …
Interpretability and fairness evaluation of deep learning models on MIMIC-IV dataset
The recent release of large-scale healthcare datasets has greatly propelled the research of
data-driven deep learning models for healthcare applications. However, due to the nature of …
data-driven deep learning models for healthcare applications. However, due to the nature of …
A survey on bias and fairness in machine learning
With the widespread use of artificial intelligence (AI) systems and applications in our
everyday lives, accounting for fairness has gained significant importance in designing and …
everyday lives, accounting for fairness has gained significant importance in designing and …
[PDF][PDF] Failures of Fairness in Automation Require a Deeper Understanding of Human-ML Augmentation.
Since machine learning (ML) systems became widely available, organizations have
considered the prospect of using ML models to increase productivity (Aghion et al. 2017) …
considered the prospect of using ML models to increase productivity (Aghion et al. 2017) …
Uncertainty as a form of transparency: Measuring, communicating, and using uncertainty
Algorithmic transparency entails exposing system properties to various stakeholders for
purposes that include understanding, improving, and contesting predictions. Until now, most …
purposes that include understanding, improving, and contesting predictions. Until now, most …
Fairness without demographics through adversarially reweighted learning
Much of the previous machine learning (ML) fairness literature assumes that protected
features such as race and sex are present in the dataset, and relies upon them to mitigate …
features such as race and sex are present in the dataset, and relies upon them to mitigate …
A multidisciplinary survey and framework for design and evaluation of explainable AI systems
The need for interpretable and accountable intelligent systems grows along with the
prevalence of artificial intelligence (AI) applications used in everyday life. Explainable AI …
prevalence of artificial intelligence (AI) applications used in everyday life. Explainable AI …
Explainable medical imaging AI needs human-centered design: guidelines and evidence from a systematic review
Abstract Transparency in Machine Learning (ML), often also referred to as interpretability or
explainability, attempts to reveal the working mechanisms of complex models. From a …
explainability, attempts to reveal the working mechanisms of complex models. From a …