A comprehensive survey on poisoning attacks and countermeasures in machine learning
The prosperity of machine learning has been accompanied by increasing attacks on the
training process. Among them, poisoning attacks have become an emerging threat during …
training process. Among them, poisoning attacks have become an emerging threat during …
Wild patterns reloaded: A survey of machine learning security against training data poisoning
The success of machine learning is fueled by the increasing availability of computing power
and large training datasets. The training data is used to learn new models or update existing …
and large training datasets. The training data is used to learn new models or update existing …
Backdoor learning: A survey
Backdoor attack intends to embed hidden backdoors into deep neural networks (DNNs), so
that the attacked models perform well on benign samples, whereas their predictions will be …
that the attacked models perform well on benign samples, whereas their predictions will be …
Backdoorbench: A comprehensive benchmark of backdoor learning
Backdoor learning is an emerging and vital topic for studying deep neural networks'
vulnerability (DNNs). Many pioneering backdoor attack and defense methods are being …
vulnerability (DNNs). Many pioneering backdoor attack and defense methods are being …
Dataset security for machine learning: Data poisoning, backdoor attacks, and defenses
As machine learning systems grow in scale, so do their training data requirements, forcing
practitioners to automate and outsource the curation of training data in order to achieve state …
practitioners to automate and outsource the curation of training data in order to achieve state …
Large language model alignment: A survey
Recent years have witnessed remarkable progress made in large language models (LLMs).
Such advancements, while garnering significant attention, have concurrently elicited various …
Such advancements, while garnering significant attention, have concurrently elicited various …
Backdoor pre-trained models can transfer to all
Pre-trained general-purpose language models have been a dominating component in
enabling real-world natural language processing (NLP) applications. However, a pre-trained …
enabling real-world natural language processing (NLP) applications. However, a pre-trained …
Badclip: Dual-embedding guided backdoor attack on multimodal contrastive learning
While existing backdoor attacks have successfully infected multimodal contrastive learning
models such as CLIP they can be easily countered by specialized backdoor defenses for …
models such as CLIP they can be easily countered by specialized backdoor defenses for …
Enhancing fine-tuning based backdoor defense with sharpness-aware minimization
Backdoor defense, which aims to detect or mitigate the effect of malicious triggers introduced
by attackers, is becoming increasingly critical for machine learning security and integrity …
by attackers, is becoming increasingly critical for machine learning security and integrity …
Foundation and large language models: fundamentals, challenges, opportunities, and social impacts
D Myers, R Mohawesh, VI Chellaboina, AL Sathvik… - Cluster …, 2024 - Springer
Abstract Foundation and Large Language Models (FLLMs) are models that are trained using
a massive amount of data with the intent to perform a variety of downstream tasks. FLLMs …
a massive amount of data with the intent to perform a variety of downstream tasks. FLLMs …