A comprehensive survey of clustering algorithms
Data analysis is used as a common method in modern science research, which is across
communication science, computer science and biology science. Clustering, as the basic …
communication science, computer science and biology science. Clustering, as the basic …
A review of clustering techniques and developments
This paper presents a comprehensive study on clustering: exiting methods and
developments made at various times. Clustering is defined as an unsupervised learning …
developments made at various times. Clustering is defined as an unsupervised learning …
DBSCAN revisited, revisited: why and how you should (still) use DBSCAN
At SIGMOD 2015, an article was presented with the title “DBSCAN Revisited: Mis-Claim, Un-
Fixability, and Approximation” that won the conference's best paper award. In this technical …
Fixability, and Approximation” that won the conference's best paper award. In this technical …
Data Mining The Text Book
C Aggarwal - 2015 - Springer
This textbook explores the different aspects of data mining from the fundamentals to the
complex data types and their applications, capturing the wide diversity of problem domains …
complex data types and their applications, capturing the wide diversity of problem domains …
[BOOK][B] Ensemble methods: foundations and algorithms
ZH Zhou - 2025 - books.google.com
Ensemble methods that train multiple learners and then combine them to use, with Boosting
and Bagging as representatives, are well-known machine learning approaches. It has …
and Bagging as representatives, are well-known machine learning approaches. It has …
[BOOK][B] Data mining: concepts and techniques
Data Mining: Concepts and Techniques, Fourth Edition introduces concepts, principles, and
methods for mining patterns, knowledge, and models from various kinds of data for diverse …
methods for mining patterns, knowledge, and models from various kinds of data for diverse …
LOF: identifying density-based local outliers
For many KDD applications, such as detecting criminal activities in E-commerce, finding the
rare instances or the outliers, can be more interesting than finding the common patterns …
rare instances or the outliers, can be more interesting than finding the common patterns …
Survey of clustering algorithms
Data analysis plays an indispensable role for understanding various phenomena. Cluster
analysis, primitive exploration with little or no prior knowledge, consists of research …
analysis, primitive exploration with little or no prior knowledge, consists of research …
OPTICS: Ordering points to identify the clustering structure
Cluster analysis is a primary method for database mining. It is either used as a stand-alone
tool to get insight into the distribution of a data set, eg to focus further analysis and data …
tool to get insight into the distribution of a data set, eg to focus further analysis and data …
Progress in outlier detection techniques: A survey
Detecting outliers is a significant problem that has been studied in various research and
application areas. Researchers continue to design robust schemes to provide solutions to …
application areas. Researchers continue to design robust schemes to provide solutions to …