The rise and potential of large language model based agents: A survey

Z **, W Chen, X Guo, W He, Y Ding, B Hong… - Science China …, 2025 - Springer
For a long time, researchers have sought artificial intelligence (AI) that matches or exceeds
human intelligence. AI agents, which are artificial entities capable of sensing the …

A comprehensive overview of large language models

H Naveed, AU Khan, S Qiu, M Saqib, S Anwar… - arxiv preprint arxiv …, 2023 - arxiv.org
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in
natural language processing tasks and beyond. This success of LLMs has led to a large …

Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context

G Team, P Georgiev, VI Lei, R Burnell, L Bai… - arxiv preprint arxiv …, 2024 - arxiv.org
In this report, we introduce the Gemini 1.5 family of models, representing the next generation
of highly compute-efficient multimodal models capable of recalling and reasoning over fine …

Harnessing the power of llms in practice: A survey on chatgpt and beyond

J Yang, H **, R Tang, X Han, Q Feng, H Jiang… - ACM Transactions on …, 2024 - dl.acm.org
This article presents a comprehensive and practical guide for practitioners and end-users
working with Large Language Models (LLMs) in their downstream Natural Language …

Dissociating language and thought in large language models

K Mahowald, AA Ivanova, IA Blank, N Kanwisher… - Trends in Cognitive …, 2024 - cell.com
Large language models (LLMs) have come closest among all models to date to mastering
human language, yet opinions about their linguistic and cognitive capabilities remain split …

Rwkv: Reinventing rnns for the transformer era

B Peng, E Alcaide, Q Anthony, A Albalak… - arxiv preprint arxiv …, 2023 - arxiv.org
Transformers have revolutionized almost all natural language processing (NLP) tasks but
suffer from memory and computational complexity that scales quadratically with sequence …

Challenges and applications of large language models

J Kaddour, J Harris, M Mozes, H Bradley… - arxiv preprint arxiv …, 2023 - arxiv.org
Large Language Models (LLMs) went from non-existent to ubiquitous in the machine
learning discourse within a few years. Due to the fast pace of the field, it is difficult to identify …

Focused transformer: Contrastive training for context scaling

S Tworkowski, K Staniszewski… - Advances in …, 2024 - proceedings.neurips.cc
Large language models have an exceptional capability to incorporate new information in a
contextual manner. However, the full potential of such an approach is often restrained due to …

Fnet: Mixing tokens with fourier transforms

J Lee-Thorp, J Ainslie, I Eckstein, S Ontanon - arxiv preprint arxiv …, 2021 - arxiv.org
We show that Transformer encoder architectures can be sped up, with limited accuracy
costs, by replacing the self-attention sublayers with simple linear transformations that" mix" …

Pre-trained language models for text generation: A survey

J Li, T Tang, WX Zhao, JY Nie, JR Wen - ACM Computing Surveys, 2024 - dl.acm.org
Text Generation aims to produce plausible and readable text in human language from input
data. The resurgence of deep learning has greatly advanced this field, in particular, with the …