The rise and potential of large language model based agents: A survey
For a long time, researchers have sought artificial intelligence (AI) that matches or exceeds
human intelligence. AI agents, which are artificial entities capable of sensing the …
human intelligence. AI agents, which are artificial entities capable of sensing the …
A comprehensive overview of large language models
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in
natural language processing tasks and beyond. This success of LLMs has led to a large …
natural language processing tasks and beyond. This success of LLMs has led to a large …
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context
G Team, P Georgiev, VI Lei, R Burnell, L Bai… - arxiv preprint arxiv …, 2024 - arxiv.org
In this report, we introduce the Gemini 1.5 family of models, representing the next generation
of highly compute-efficient multimodal models capable of recalling and reasoning over fine …
of highly compute-efficient multimodal models capable of recalling and reasoning over fine …
Harnessing the power of llms in practice: A survey on chatgpt and beyond
This article presents a comprehensive and practical guide for practitioners and end-users
working with Large Language Models (LLMs) in their downstream Natural Language …
working with Large Language Models (LLMs) in their downstream Natural Language …
Dissociating language and thought in large language models
Large language models (LLMs) have come closest among all models to date to mastering
human language, yet opinions about their linguistic and cognitive capabilities remain split …
human language, yet opinions about their linguistic and cognitive capabilities remain split …
Rwkv: Reinventing rnns for the transformer era
Transformers have revolutionized almost all natural language processing (NLP) tasks but
suffer from memory and computational complexity that scales quadratically with sequence …
suffer from memory and computational complexity that scales quadratically with sequence …
Challenges and applications of large language models
Large Language Models (LLMs) went from non-existent to ubiquitous in the machine
learning discourse within a few years. Due to the fast pace of the field, it is difficult to identify …
learning discourse within a few years. Due to the fast pace of the field, it is difficult to identify …
Focused transformer: Contrastive training for context scaling
Large language models have an exceptional capability to incorporate new information in a
contextual manner. However, the full potential of such an approach is often restrained due to …
contextual manner. However, the full potential of such an approach is often restrained due to …
Fnet: Mixing tokens with fourier transforms
We show that Transformer encoder architectures can be sped up, with limited accuracy
costs, by replacing the self-attention sublayers with simple linear transformations that" mix" …
costs, by replacing the self-attention sublayers with simple linear transformations that" mix" …
Pre-trained language models for text generation: A survey
Text Generation aims to produce plausible and readable text in human language from input
data. The resurgence of deep learning has greatly advanced this field, in particular, with the …
data. The resurgence of deep learning has greatly advanced this field, in particular, with the …