Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming

TA Shaikh, T Rasool, FR Lone - Computers and Electronics in Agriculture, 2022 - Elsevier
The digitalization of data has resulted in a data tsunami in practically every industry of data-
driven enterprise. Furthermore, man-to-machine (M2M) digital data handling has …

Machine learning in agriculture: A comprehensive updated review

L Benos, AC Tagarakis, G Dolias, R Berruto, D Kateris… - Sensors, 2021 - mdpi.com
The digital transformation of agriculture has evolved various aspects of management into
artificial intelligent systems for the sake of making value from the ever-increasing data …

Forecasting of crop yield using remote sensing data, agrarian factors and machine learning approaches

JP Bharadiya, NT Tzenios… - Journal of Engineering …, 2023 - classical.goforpromo.com
The art of predicting crop production is done before the crop is harvested. Crop output
forecasts will help people make timely judgments concerning food policy, prices in markets …

[HTML][HTML] Crop yield prediction using machine learning: A systematic literature review

T Van Klompenburg, A Kassahun, C Catal - Computers and electronics in …, 2020 - Elsevier
Abstract Machine learning is an important decision support tool for crop yield prediction,
including supporting decisions on what crops to grow and what to do during the growing …

Machine learning for smart agriculture and precision farming: towards making the fields talk

TA Shaikh, WA Mir, T Rasool, S Sofi - Archives of Computational Methods …, 2022 - Springer
In almost every sector, data-driven business, the digitization of the data has generated a
data tsunami. In addition, man-to-machine digital data handling has magnified the …

Predicting and map** of soil organic carbon using machine learning algorithms in Northern Iran

M Emadi, R Taghizadeh-Mehrjardi, A Cherati… - Remote Sensing, 2020 - mdpi.com
Estimation of the soil organic carbon (SOC) content is of utmost importance in understanding
the chemical, physical, and biological functions of the soil. This study proposes machine …

[HTML][HTML] Integrated phenology and climate in rice yields prediction using machine learning methods

Y Guo, Y Fu, F Hao, X Zhang, W Wu, X **… - Ecological …, 2021 - Elsevier
Rice (Oryza sativa L.) is a staple cereal crop and its demand is substantially increasing with
the growth of the global population. Precisely predicting rice yields are of vital importance to …

Corn yield prediction and uncertainty analysis based on remotely sensed variables using a Bayesian neural network approach

Y Ma, Z Zhang, Y Kang, M Özdoğan - Remote Sensing of Environment, 2021 - Elsevier
As the world's leading corn producer, the United States supplies more than 30% of the
global corn production. Accurate and timely estimation of corn yield is therefore essential for …

Alfalfa yield prediction using UAV-based hyperspectral imagery and ensemble learning

L Feng, Z Zhang, Y Ma, Q Du, P Williams, J Drewry… - Remote Sensing, 2020 - mdpi.com
Alfalfa is a valuable and intensively produced forage crop in the United States, and the
timely estimation of its yield can inform precision management decisions. However …

Remote-sensing data and deep-learning techniques in crop map** and yield prediction: A systematic review

A Joshi, B Pradhan, S Gite, S Chakraborty - Remote Sensing, 2023 - mdpi.com
Reliable and timely crop-yield prediction and crop map** are crucial for food security and
decision making in the food industry and in agro-environmental management. The global …