Deep learning for 3d point clouds: A survey
Point cloud learning has lately attracted increasing attention due to its wide applications in
many areas, such as computer vision, autonomous driving, and robotics. As a dominating …
many areas, such as computer vision, autonomous driving, and robotics. As a dominating …
A survey of embodied ai: From simulators to research tasks
There has been an emerging paradigm shift from the era of “internet AI” to “embodied AI,”
where AI algorithms and agents no longer learn from datasets of images, videos or text …
where AI algorithms and agents no longer learn from datasets of images, videos or text …
Objaverse-xl: A universe of 10m+ 3d objects
Natural language processing and 2D vision models have attained remarkable proficiency on
many tasks primarily by escalating the scale of training data. However, 3D vision tasks have …
many tasks primarily by escalating the scale of training data. However, 3D vision tasks have …
Ulip: Learning a unified representation of language, images, and point clouds for 3d understanding
The recognition capabilities of current state-of-the-art 3D models are limited by datasets with
a small number of annotated data and a pre-defined set of categories. In its 2D counterpart …
a small number of annotated data and a pre-defined set of categories. In its 2D counterpart …
Pointnext: Revisiting pointnet++ with improved training and scaling strategies
PointNet++ is one of the most influential neural architectures for point cloud understanding.
Although the accuracy of PointNet++ has been largely surpassed by recent networks such …
Although the accuracy of PointNet++ has been largely surpassed by recent networks such …
Omniobject3d: Large-vocabulary 3d object dataset for realistic perception, reconstruction and generation
Recent advances in modeling 3D objects mostly rely on synthetic datasets due to the lack of
large-scale real-scanned 3D databases. To facilitate the development of 3D perception …
large-scale real-scanned 3D databases. To facilitate the development of 3D perception …
Masked autoencoders for point cloud self-supervised learning
As a promising scheme of self-supervised learning, masked autoencoding has significantly
advanced natural language processing and computer vision. Inspired by this, we propose a …
advanced natural language processing and computer vision. Inspired by this, we propose a …
Mvimgnet: A large-scale dataset of multi-view images
Being data-driven is one of the most iconic properties of deep learning algorithms. The birth
of ImageNet drives a remarkable trend of" learning from large-scale data" in computer vision …
of ImageNet drives a remarkable trend of" learning from large-scale data" in computer vision …
Point-bert: Pre-training 3d point cloud transformers with masked point modeling
We present Point-BERT, a novel paradigm for learning Transformers to generalize the
concept of BERT onto 3D point cloud. Following BERT, we devise a Masked Point Modeling …
concept of BERT onto 3D point cloud. Following BERT, we devise a Masked Point Modeling …
Point-m2ae: multi-scale masked autoencoders for hierarchical point cloud pre-training
Masked Autoencoders (MAE) have shown great potentials in self-supervised pre-training for
language and 2D image transformers. However, it still remains an open question on how to …
language and 2D image transformers. However, it still remains an open question on how to …