Deep learning in physiological signal data: A survey

B Rim, NJ Sung, S Min, M Hong - Sensors, 2020 - mdpi.com
Deep Learning (DL), a successful promising approach for discriminative and generative
tasks, has recently proved its high potential in 2D medical imaging analysis; however …

Automatic sleep staging of EEG signals: recent development, challenges, and future directions

H Phan, K Mikkelsen - Physiological Measurement, 2022 - iopscience.iop.org
Modern deep learning holds a great potential to transform clinical studies of human sleep.
Teaching a machine to carry out routine tasks would be a tremendous reduction in workload …

SeqSleepNet: end-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging

H Phan, F Andreotti, N Cooray… - IEEE Transactions on …, 2019 - ieeexplore.ieee.org
Automatic sleep staging has been often treated as a simple classification problem that aims
at determining the label of individual target polysomnography epochs one at a time. In this …

Sleeptransformer: Automatic sleep staging with interpretability and uncertainty quantification

H Phan, K Mikkelsen, OY Chén, P Koch… - IEEE Transactions …, 2022 - ieeexplore.ieee.org
Background: Black-box skepticism is one of the main hindrances impeding deep-learning-
based automatic sleep scoring from being used in clinical environments. Methods: Towards …

Multi-view spatial-temporal graph convolutional networks with domain generalization for sleep stage classification

Z Jia, Y Lin, J Wang, X Ning, Y He… - … on Neural Systems …, 2021 - ieeexplore.ieee.org
Sleep stage classification is essential for sleep assessment and disease diagnosis.
Although previous attempts to classify sleep stages have achieved high classification …

XSleepNet: Multi-view sequential model for automatic sleep staging

H Phan, OY Chén, MC Tran, P Koch… - … on Pattern Analysis …, 2021 - ieeexplore.ieee.org
Automating sleep staging is vital to scale up sleep assessment and diagnosis to serve
millions experiencing sleep deprivation and disorders and enable longitudinal sleep …

Joint classification and prediction CNN framework for automatic sleep stage classification

H Phan, F Andreotti, N Cooray… - IEEE Transactions on …, 2018 - ieeexplore.ieee.org
Correctly identifying sleep stages is important in diagnosing and treating sleep disorders.
This paper proposes a joint classification-and-prediction framework based on convolutional …

[PDF][PDF] GraphSleepNet: Adaptive spatial-temporal graph convolutional networks for sleep stage classification.

Z Jia, Y Lin, J Wang, R Zhou, X Ning, Y He, Y Zhao - Ijcai, 2020 - researchgate.net
Sleep stage classification is essential for sleep assessment and disease diagnosis.
However, how to effectively utilize brain spatial features and transition information among …

Automatic sleep stage classification using temporal convolutional neural network and new data augmentation technique from raw single-channel EEG

E Khalili, BM Asl - Computer Methods and Programs in Biomedicine, 2021 - Elsevier
Background and objective: This paper presents a new framework for automatic classification
of sleep stages using a deep learning algorithm from single-channel EEG signals. Each …

Deep learning for predicting respiratory rate from biosignals

AK Kumar, M Ritam, L Han, S Guo… - Computers in biology and …, 2022 - Elsevier
In the past decade, deep learning models have been applied to bio-sensors used in a body
sensor network for prediction. Given recent innovations in this field, the prediction accuracy …