A comprehensive survey on deep graph representation learning

W Ju, Z Fang, Y Gu, Z Liu, Q Long, Z Qiao, Y Qin… - Neural Networks, 2024 - Elsevier
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …

Graph neural networks for graphs with heterophily: A survey

X Zheng, Y Wang, Y Liu, M Li, M Zhang, D **… - arxiv preprint arxiv …, 2022 - arxiv.org
Recent years have witnessed fast developments of graph neural networks (GNNs) that have
benefited myriads of graph analytic tasks and applications. In general, most GNNs depend …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

Data augmentation for deep graph learning: A survey

K Ding, Z Xu, H Tong, H Liu - ACM SIGKDD Explorations Newsletter, 2022 - dl.acm.org
Graph neural networks, a powerful deep learning tool to model graph-structured data, have
demonstrated remarkable performance on numerous graph learning tasks. To address the …

A comprehensive survey on trustworthy graph neural networks: Privacy, robustness, fairness, and explainability

E Dai, T Zhao, H Zhu, J Xu, Z Guo, H Liu, J Tang… - Machine Intelligence …, 2024 - Springer
Graph neural networks (GNNs) have made rapid developments in the recent years. Due to
their great ability in modeling graph-structured data, GNNs are vastly used in various …

Graph structure learning for robust graph neural networks

W **, Y Ma, X Liu, X Tang, S Wang… - Proceedings of the 26th …, 2020 - dl.acm.org
Graph Neural Networks (GNNs) are powerful tools in representation learning for graphs.
However, recent studies show that GNNs are vulnerable to carefully-crafted perturbations …

Are defenses for graph neural networks robust?

F Mujkanovic, S Geisler… - Advances in Neural …, 2022 - proceedings.neurips.cc
A cursory reading of the literature suggests that we have made a lot of progress in designing
effective adversarial defenses for Graph Neural Networks (GNNs). Yet, the standard …

Graph information bottleneck

T Wu, H Ren, P Li, J Leskovec - Advances in Neural …, 2020 - proceedings.neurips.cc
Abstract Representation learning of graph-structured data is challenging because both
graph structure and node features carry important information. Graph Neural Networks …

[LIBRO][B] Deep learning on graphs

Y Ma, J Tang - 2021 - books.google.com
Deep learning on graphs has become one of the hottest topics in machine learning. The
book consists of four parts to best accommodate our readers with diverse backgrounds and …

Node similarity preserving graph convolutional networks

W **, T Derr, Y Wang, Y Ma, Z Liu, J Tang - Proceedings of the 14th …, 2021 - dl.acm.org
Graph Neural Networks (GNNs) have achieved tremendous success in various real-world
applications due to their strong ability in graph representation learning. GNNs explore the …