Noisy intermediate-scale quantum algorithms

K Bharti, A Cervera-Lierta, TH Kyaw, T Haug… - Reviews of Modern …, 2022 - APS
A universal fault-tolerant quantum computer that can efficiently solve problems such as
integer factorization and unstructured database search requires millions of qubits with low …

Variational quantum algorithms

M Cerezo, A Arrasmith, R Babbush… - Nature Reviews …, 2021 - nature.com
Applications such as simulating complicated quantum systems or solving large-scale linear
algebra problems are very challenging for classical computers, owing to the extremely high …

The power of quantum neural networks

A Abbas, D Sutter, C Zoufal, A Lucchi, A Figalli… - Nature Computational …, 2021 - nature.com
It is unknown whether near-term quantum computers are advantageous for machine
learning tasks. In this work we address this question by trying to understand how powerful …

Power of data in quantum machine learning

HY Huang, M Broughton, M Mohseni… - Nature …, 2021 - nature.com
The use of quantum computing for machine learning is among the most exciting prospective
applications of quantum technologies. However, machine learning tasks where data is …

Exploiting symmetry in variational quantum machine learning

JJ Meyer, M Mularski, E Gil-Fuster, AA Mele, F Arzani… - PRX Quantum, 2023 - APS
Variational quantum machine learning is an extensively studied application of near-term
quantum computers. The success of variational quantum learning models crucially depends …

A rigorous and robust quantum speed-up in supervised machine learning

Y Liu, S Arunachalam, K Temme - Nature Physics, 2021 - nature.com
Recently, several quantum machine learning algorithms have been proposed that may offer
quantum speed-ups over their classical counterparts. Most of these algorithms are either …

Is quantum advantage the right goal for quantum machine learning?

M Schuld, N Killoran - Prx Quantum, 2022 - APS
Machine learning is frequently listed among the most promising applications for quantum
computing. This is in fact a curious choice: the machine-learning algorithms of today are …

Effect of data encoding on the expressive power of variational quantum-machine-learning models

M Schuld, R Sweke, JJ Meyer - Physical Review A, 2021 - APS
Quantum computers can be used for supervised learning by treating parametrized quantum
circuits as models that map data inputs to predictions. While a lot of work has been done to …

Supervised quantum machine learning models are kernel methods

M Schuld - arxiv preprint arxiv:2101.11020, 2021 - arxiv.org
With near-term quantum devices available and the race for fault-tolerant quantum computers
in full swing, researchers became interested in the question of what happens if we replace a …

Parameterized quantum circuits as machine learning models

M Benedetti, E Lloyd, S Sack… - Quantum Science and …, 2019 - iopscience.iop.org
Hybrid quantum–classical systems make it possible to utilize existing quantum computers to
their fullest extent. Within this framework, parameterized quantum circuits can be regarded …