Noisy intermediate-scale quantum algorithms
A universal fault-tolerant quantum computer that can efficiently solve problems such as
integer factorization and unstructured database search requires millions of qubits with low …
integer factorization and unstructured database search requires millions of qubits with low …
Variational quantum algorithms
Applications such as simulating complicated quantum systems or solving large-scale linear
algebra problems are very challenging for classical computers, owing to the extremely high …
algebra problems are very challenging for classical computers, owing to the extremely high …
The power of quantum neural networks
It is unknown whether near-term quantum computers are advantageous for machine
learning tasks. In this work we address this question by trying to understand how powerful …
learning tasks. In this work we address this question by trying to understand how powerful …
Power of data in quantum machine learning
The use of quantum computing for machine learning is among the most exciting prospective
applications of quantum technologies. However, machine learning tasks where data is …
applications of quantum technologies. However, machine learning tasks where data is …
Exploiting symmetry in variational quantum machine learning
Variational quantum machine learning is an extensively studied application of near-term
quantum computers. The success of variational quantum learning models crucially depends …
quantum computers. The success of variational quantum learning models crucially depends …
A rigorous and robust quantum speed-up in supervised machine learning
Recently, several quantum machine learning algorithms have been proposed that may offer
quantum speed-ups over their classical counterparts. Most of these algorithms are either …
quantum speed-ups over their classical counterparts. Most of these algorithms are either …
Is quantum advantage the right goal for quantum machine learning?
Machine learning is frequently listed among the most promising applications for quantum
computing. This is in fact a curious choice: the machine-learning algorithms of today are …
computing. This is in fact a curious choice: the machine-learning algorithms of today are …
Effect of data encoding on the expressive power of variational quantum-machine-learning models
Quantum computers can be used for supervised learning by treating parametrized quantum
circuits as models that map data inputs to predictions. While a lot of work has been done to …
circuits as models that map data inputs to predictions. While a lot of work has been done to …
Supervised quantum machine learning models are kernel methods
M Schuld - arxiv preprint arxiv:2101.11020, 2021 - arxiv.org
With near-term quantum devices available and the race for fault-tolerant quantum computers
in full swing, researchers became interested in the question of what happens if we replace a …
in full swing, researchers became interested in the question of what happens if we replace a …
Parameterized quantum circuits as machine learning models
Hybrid quantum–classical systems make it possible to utilize existing quantum computers to
their fullest extent. Within this framework, parameterized quantum circuits can be regarded …
their fullest extent. Within this framework, parameterized quantum circuits can be regarded …