[HTML][HTML] Generative artificial intelligence and its applications in materials science: Current situation and future perspectives

Y Liu, Z Yang, Z Yu, Z Liu, D Liu, H Lin, M Li, S Ma… - Journal of …, 2023 - Elsevier
Abstract Generative Artificial Intelligence (GAI) is attracting the increasing attention of
materials community for its excellent capability of generating required contents. With the …

Structured pruning for deep convolutional neural networks: A survey

Y He, L **ao - IEEE transactions on pattern analysis and …, 2023 - ieeexplore.ieee.org
The remarkable performance of deep Convolutional neural networks (CNNs) is generally
attributed to their deeper and wider architectures, which can come with significant …

Sustainable ai: Environmental implications, challenges and opportunities

CJ Wu, R Raghavendra, U Gupta… - Proceedings of …, 2022 - proceedings.mlsys.org
This paper explores the environmental impact of the super-linear growth trends for AI from a
holistic perspective, spanning Data, Algorithms, and System Hardware. We characterize the …

[HTML][HTML] Recurrent neural networks: A comprehensive review of architectures, variants, and applications

ID Mienye, TG Swart, G Obaido - Information, 2024 - mdpi.com
Recurrent neural networks (RNNs) have significantly advanced the field of machine learning
(ML) by enabling the effective processing of sequential data. This paper provides a …

Neural architecture search: Insights from 1000 papers

C White, M Safari, R Sukthanker, B Ru, T Elsken… - arxiv preprint arxiv …, 2023 - arxiv.org
In the past decade, advances in deep learning have resulted in breakthroughs in a variety of
areas, including computer vision, natural language understanding, speech recognition, and …

End-edge-cloud collaborative computing for deep learning: A comprehensive survey

Y Wang, C Yang, S Lan, L Zhu… - … Surveys & Tutorials, 2024 - ieeexplore.ieee.org
The booming development of deep learning applications and services heavily relies on
large deep learning models and massive data in the cloud. However, cloud-based deep …

A survey of deep active learning

P Ren, Y **ao, X Chang, PY Huang, Z Li… - ACM computing …, 2021 - dl.acm.org
Active learning (AL) attempts to maximize a model's performance gain while annotating the
fewest samples possible. Deep learning (DL) is greedy for data and requires a large amount …

Lightweight deep learning for resource-constrained environments: A survey

HI Liu, M Galindo, H **e, LK Wong, HH Shuai… - ACM Computing …, 2024 - dl.acm.org
Over the past decade, the dominance of deep learning has prevailed across various
domains of artificial intelligence, including natural language processing, computer vision …

Minimizing the accumulated trajectory error to improve dataset distillation

J Du, Y Jiang, VYF Tan, JT Zhou… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Abstract Model-based deep learning has achieved astounding successes due in part to the
availability of large-scale real-world data. However, processing such massive amounts of …

Evolutionary computation in the era of large language model: Survey and roadmap

X Wu, S Wu, J Wu, L Feng… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Large language models (LLMs) have not only revolutionized natural language processing
but also extended their prowess to various domains, marking a significant stride towards …