Distributed learning in wireless networks: Recent progress and future challenges
The next-generation of wireless networks will enable many machine learning (ML) tools and
applications to efficiently analyze various types of data collected by edge devices for …
applications to efficiently analyze various types of data collected by edge devices for …
[HTML][HTML] A state-of-the-art survey on deep learning theory and architectures
In recent years, deep learning has garnered tremendous success in a variety of application
domains. This new field of machine learning has been growing rapidly and has been …
domains. This new field of machine learning has been growing rapidly and has been …
Gpt3. int8 (): 8-bit matrix multiplication for transformers at scale
Large language models have been widely adopted but require significant GPU memory for
inference. We develop a procedure for Int8 matrix multiplication for feed-forward and …
inference. We develop a procedure for Int8 matrix multiplication for feed-forward and …
Beyond transmitting bits: Context, semantics, and task-oriented communications
Communication systems to date primarily aim at reliably communicating bit sequences.
Such an approach provides efficient engineering designs that are agnostic to the meanings …
Such an approach provides efficient engineering designs that are agnostic to the meanings …
A survey of quantization methods for efficient neural network inference
This chapter provides approaches to the problem of quantizing the numerical values in deep
Neural Network computations, covering the advantages/disadvantages of current methods …
Neural Network computations, covering the advantages/disadvantages of current methods …
Pruning and quantization for deep neural network acceleration: A survey
Deep neural networks have been applied in many applications exhibiting extraordinary
abilities in the field of computer vision. However, complex network architectures challenge …
abilities in the field of computer vision. However, complex network architectures challenge …
{BatchCrypt}: Efficient homomorphic encryption for {Cross-Silo} federated learning
Cross-silo federated learning (FL) enables organizations (eg, financial, or medical) to
collaboratively train a machine learning model by aggregating local gradient updates from …
collaboratively train a machine learning model by aggregating local gradient updates from …
8-bit optimizers via block-wise quantization
Stateful optimizers maintain gradient statistics over time, eg, the exponentially smoothed
sum (SGD with momentum) or squared sum (Adam) of past gradient values. This state can …
sum (SGD with momentum) or squared sum (Adam) of past gradient values. This state can …
A comprehensive survey on model compression and acceleration
In recent years, machine learning (ML) and deep learning (DL) have shown remarkable
improvement in computer vision, natural language processing, stock prediction, forecasting …
improvement in computer vision, natural language processing, stock prediction, forecasting …
[HTML][HTML] Deep learning with spiking neurons: opportunities and challenges
Spiking neural networks (SNNs) are inspired by information processing in biology, where
sparse and asynchronous binary signals are communicated and processed in a massively …
sparse and asynchronous binary signals are communicated and processed in a massively …