Diffusion models in vision: A survey
Denoising diffusion models represent a recent emerging topic in computer vision,
demonstrating remarkable results in the area of generative modeling. A diffusion model is a …
demonstrating remarkable results in the area of generative modeling. A diffusion model is a …
Foundations & trends in multimodal machine learning: Principles, challenges, and open questions
Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design
computer agents with intelligent capabilities such as understanding, reasoning, and learning …
computer agents with intelligent capabilities such as understanding, reasoning, and learning …
[HTML][HTML] AI for life: Trends in artificial intelligence for biotechnology
Due to popular successes (eg, ChatGPT) Artificial Intelligence (AI) is on everyone's lips
today. When advances in biotechnology are combined with advances in AI unprecedented …
today. When advances in biotechnology are combined with advances in AI unprecedented …
Evaluating large language models in generating synthetic hci research data: a case study
Collecting data is one of the bottlenecks of Human-Computer Interaction (HCI) research.
Motivated by this, we explore the potential of large language models (LLMs) in generating …
Motivated by this, we explore the potential of large language models (LLMs) in generating …
Deep learning modelling techniques: current progress, applications, advantages, and challenges
Deep learning (DL) is revolutionizing evidence-based decision-making techniques that can
be applied across various sectors. Specifically, it possesses the ability to utilize two or more …
be applied across various sectors. Specifically, it possesses the ability to utilize two or more …
Machine learning for a sustainable energy future
Transitioning from fossil fuels to renewable energy sources is a critical global challenge; it
demands advances—at the materials, devices and systems levels—for the efficient …
demands advances—at the materials, devices and systems levels—for the efficient …
Federated learning review: Fundamentals, enabling technologies, and future applications
Federated Learning (FL) has been foundational in improving the performance of a wide
range of applications since it was first introduced by Google. Some of the most prominent …
range of applications since it was first introduced by Google. Some of the most prominent …
Machine learning for electrocatalyst and photocatalyst design and discovery
Electrocatalysts and photocatalysts are key to a sustainable future, generating clean fuels,
reducing the impact of global warming, and providing solutions to environmental pollution …
reducing the impact of global warming, and providing solutions to environmental pollution …
The dark side of generative artificial intelligence: A critical analysis of controversies and risks of ChatGPT
Objective: The objective of the article is to provide a comprehensive identification and
understanding of the challenges and opportunities associated with the use of generative …
understanding of the challenges and opportunities associated with the use of generative …
[HTML][HTML] Data augmentation: A comprehensive survey of modern approaches
A Mumuni, F Mumuni - Array, 2022 - Elsevier
To ensure good performance, modern machine learning models typically require large
amounts of quality annotated data. Meanwhile, the data collection and annotation processes …
amounts of quality annotated data. Meanwhile, the data collection and annotation processes …