Diffusion models in vision: A survey

FA Croitoru, V Hondru, RT Ionescu… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Denoising diffusion models represent a recent emerging topic in computer vision,
demonstrating remarkable results in the area of generative modeling. A diffusion model is a …

Foundations & trends in multimodal machine learning: Principles, challenges, and open questions

PP Liang, A Zadeh, LP Morency - ACM Computing Surveys, 2024 - dl.acm.org
Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design
computer agents with intelligent capabilities such as understanding, reasoning, and learning …

[HTML][HTML] AI for life: Trends in artificial intelligence for biotechnology

A Holzinger, K Keiblinger, P Holub, K Zatloukal… - New …, 2023 - Elsevier
Due to popular successes (eg, ChatGPT) Artificial Intelligence (AI) is on everyone's lips
today. When advances in biotechnology are combined with advances in AI unprecedented …

Evaluating large language models in generating synthetic hci research data: a case study

P Hämäläinen, M Tavast, A Kunnari - … of the 2023 CHI Conference on …, 2023 - dl.acm.org
Collecting data is one of the bottlenecks of Human-Computer Interaction (HCI) research.
Motivated by this, we explore the potential of large language models (LLMs) in generating …

Deep learning modelling techniques: current progress, applications, advantages, and challenges

SF Ahmed, MSB Alam, M Hassan, MR Rozbu… - Artificial Intelligence …, 2023 - Springer
Deep learning (DL) is revolutionizing evidence-based decision-making techniques that can
be applied across various sectors. Specifically, it possesses the ability to utilize two or more …

Machine learning for a sustainable energy future

Z Yao, Y Lum, A Johnston, LM Mejia-Mendoza… - Nature Reviews …, 2023 - nature.com
Transitioning from fossil fuels to renewable energy sources is a critical global challenge; it
demands advances—at the materials, devices and systems levels—for the efficient …

Federated learning review: Fundamentals, enabling technologies, and future applications

S Banabilah, M Aloqaily, E Alsayed, N Malik… - Information processing & …, 2022 - Elsevier
Federated Learning (FL) has been foundational in improving the performance of a wide
range of applications since it was first introduced by Google. Some of the most prominent …

Machine learning for electrocatalyst and photocatalyst design and discovery

H Mai, TC Le, D Chen, DA Winkler… - Chemical …, 2022 - ACS Publications
Electrocatalysts and photocatalysts are key to a sustainable future, generating clean fuels,
reducing the impact of global warming, and providing solutions to environmental pollution …

The dark side of generative artificial intelligence: A critical analysis of controversies and risks of ChatGPT

K Wach, CD Duong, J Ejdys, R Kazlauskaitė… - … and Economics Review, 2023 - ceeol.com
Objective: The objective of the article is to provide a comprehensive identification and
understanding of the challenges and opportunities associated with the use of generative …

[HTML][HTML] Data augmentation: A comprehensive survey of modern approaches

A Mumuni, F Mumuni - Array, 2022 - Elsevier
To ensure good performance, modern machine learning models typically require large
amounts of quality annotated data. Meanwhile, the data collection and annotation processes …