Machine learning methods for small data challenges in molecular science
Small data are often used in scientific and engineering research due to the presence of
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …
Graph neural networks for materials science and chemistry
Abstract Machine learning plays an increasingly important role in many areas of chemistry
and materials science, being used to predict materials properties, accelerate simulations …
and materials science, being used to predict materials properties, accelerate simulations …
A comprehensive survey on deep graph representation learning
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …
structured data into low-dimensional dense vectors, which is a fundamental task that has …
Gemnet: Universal directional graph neural networks for molecules
J Gasteiger, F Becker… - Advances in Neural …, 2021 - proceedings.neurips.cc
Effectively predicting molecular interactions has the potential to accelerate molecular
dynamics by multiple orders of magnitude and thus revolutionize chemical simulations …
dynamics by multiple orders of magnitude and thus revolutionize chemical simulations …
Physics-inspired structural representations for molecules and materials
The first step in the construction of a regression model or a data-driven analysis, aiming to
predict or elucidate the relationship between the atomic-scale structure of matter and its …
predict or elucidate the relationship between the atomic-scale structure of matter and its …
Equiformer: Equivariant graph attention transformer for 3d atomistic graphs
YL Liao, T Smidt - arxiv preprint arxiv:2206.11990, 2022 - arxiv.org
Despite their widespread success in various domains, Transformer networks have yet to
perform well across datasets in the domain of 3D atomistic graphs such as molecules even …
perform well across datasets in the domain of 3D atomistic graphs such as molecules even …
Atomistic line graph neural network for improved materials property predictions
Graph neural networks (GNN) have been shown to provide substantial performance
improvements for atomistic material representation and modeling compared with descriptor …
improvements for atomistic material representation and modeling compared with descriptor …
Provably efficient machine learning for quantum many-body problems
Classical machine learning (ML) provides a potentially powerful approach to solving
challenging quantum many-body problems in physics and chemistry. However, the …
challenging quantum many-body problems in physics and chemistry. However, the …
Nested graph neural networks
Graph neural network (GNN)'s success in graph classification is closely related to the
Weisfeiler-Lehman (1-WL) algorithm. By iteratively aggregating neighboring node features …
Weisfeiler-Lehman (1-WL) algorithm. By iteratively aggregating neighboring node features …
Fast and uncertainty-aware directional message passing for non-equilibrium molecules
Many important tasks in chemistry revolve around molecules during reactions. This requires
predictions far from the equilibrium, while most recent work in machine learning for …
predictions far from the equilibrium, while most recent work in machine learning for …