Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Tool learning with foundation models
Humans possess an extraordinary ability to create and utilize tools. With the advent of
foundation models, artificial intelligence systems have the potential to be equally adept in …
foundation models, artificial intelligence systems have the potential to be equally adept in …
Reinforcement learning algorithms: A brief survey
Reinforcement Learning (RL) is a machine learning (ML) technique to learn sequential
decision-making in complex problems. RL is inspired by trial-and-error based human/animal …
decision-making in complex problems. RL is inspired by trial-and-error based human/animal …
Champion-level drone racing using deep reinforcement learning
First-person view (FPV) drone racing is a televised sport in which professional competitors
pilot high-speed aircraft through a 3D circuit. Each pilot sees the environment from the …
pilot high-speed aircraft through a 3D circuit. Each pilot sees the environment from the …
Mastering diverse domains through world models
D Hafner, J Pasukonis, J Ba, T Lillicrap - ar** a general algorithm that learns to solve tasks across a wide range of
applications has been a fundamental challenge in artificial intelligence. Although current …
applications has been a fundamental challenge in artificial intelligence. Although current …
Reasoning with language model is planning with world model
Large language models (LLMs) have shown remarkable reasoning capabilities, especially
when prompted to generate intermediate reasoning steps (eg, Chain-of-Thought, CoT) …
when prompted to generate intermediate reasoning steps (eg, Chain-of-Thought, CoT) …
Faster sorting algorithms discovered using deep reinforcement learning
Fundamental algorithms such as sorting or hashing are used trillions of times on any given
day. As demand for computation grows, it has become critical for these algorithms to be as …
day. As demand for computation grows, it has become critical for these algorithms to be as …
Large language models as commonsense knowledge for large-scale task planning
Large-scale task planning is a major challenge. Recent work exploits large language
models (LLMs) directly as a policy and shows surprisingly interesting results. This paper …
models (LLMs) directly as a policy and shows surprisingly interesting results. This paper …
Gaia-1: A generative world model for autonomous driving
Autonomous driving promises transformative improvements to transportation, but building
systems capable of safely navigating the unstructured complexity of real-world scenarios …
systems capable of safely navigating the unstructured complexity of real-world scenarios …
All-analog photoelectronic chip for high-speed vision tasks
Photonic computing enables faster and more energy-efficient processing of vision data,,,–.
However, experimental superiority of deployable systems remains a challenge because of …
However, experimental superiority of deployable systems remains a challenge because of …
Rest-mcts*: Llm self-training via process reward guided tree search
Recent methodologies in LLM self-training mostly rely on LLM generating responses and
filtering those with correct output answers as training data. This approach often yields a low …
filtering those with correct output answers as training data. This approach often yields a low …