Current advances and future perspectives of image fusion: A comprehensive review

S Karim, G Tong, J Li, A Qadir, U Farooq, Y Yu - Information Fusion, 2023 - Elsevier
Multiple imaging modalities can be combined to provide more information about the real
world than a single modality alone. Infrared images discriminate targets with respect to their …

Deepfakes generation and detection: State-of-the-art, open challenges, countermeasures, and way forward

M Masood, M Nawaz, KM Malik, A Javed, A Irtaza… - Applied …, 2023 - Springer
Easy access to audio-visual content on social media, combined with the availability of
modern tools such as Tensorflow or Keras, and open-source trained models, along with …

Cotracker: It is better to track together

N Karaev, I Rocco, B Graham, N Neverova… - … on Computer Vision, 2024 - Springer
We introduce CoTracker, a transformer-based model that tracks a large number of 2D points
in long video sequences. Differently from most existing approaches that track points …

Tracking everything everywhere all at once

Q Wang, YY Chang, R Cai, Z Li… - Proceedings of the …, 2023 - openaccess.thecvf.com
We present a new test-time optimization method for estimating dense and long-range motion
from a video sequence. Prior optical flow or particle video tracking algorithms typically …

Tapir: Tracking any point with per-frame initialization and temporal refinement

C Doersch, Y Yang, M Vecerik… - Proceedings of the …, 2023 - openaccess.thecvf.com
We present a novel model for Tracking Any Point (TAP) that effectively tracks any queried
point on any physical surface throughout a video sequence. Our approach employs two …

Pointodyssey: A large-scale synthetic dataset for long-term point tracking

Y Zheng, AW Harley, B Shen… - Proceedings of the …, 2023 - openaccess.thecvf.com
We introduce PointOdyssey, a large-scale synthetic dataset, and data generation framework,
for the training and evaluation of long-term fine-grained tracking algorithms. Our goal is to …

Unifying flow, stereo and depth estimation

H Xu, J Zhang, J Cai, H Rezatofighi… - … on Pattern Analysis …, 2023 - ieeexplore.ieee.org
We present a unified formulation and model for three motion and 3D perception tasks:
optical flow, rectified stereo matching and unrectified stereo depth estimation from posed …

The cell tracking challenge: 10 years of objective benchmarking

M Maška, V Ulman, P Delgado-Rodriguez… - Nature …, 2023 - nature.com
Abstract The Cell Tracking Challenge is an ongoing benchmarking initiative that has
become a reference in cell segmentation and tracking algorithm development. Here, we …

The surprising effectiveness of diffusion models for optical flow and monocular depth estimation

S Saxena, C Herrmann, J Hur, A Kar… - Advances in …, 2023 - proceedings.neurips.cc
Denoising diffusion probabilistic models have transformed image generation with their
impressive fidelity and diversity. We show that they also excel in estimating optical flow and …

Flowformer: A transformer architecture for optical flow

Z Huang, X Shi, C Zhang, Q Wang, KC Cheung… - European conference on …, 2022 - Springer
We introduce optical Flow transFormer, dubbed as FlowFormer, a transformer-based neural
network architecture for learning optical flow. FlowFormer tokenizes the 4D cost volume built …