Combining machine learning and computational chemistry for predictive insights into chemical systems
Machine learning models are poised to make a transformative impact on chemical sciences
by dramatically accelerating computational algorithms and amplifying insights available from …
by dramatically accelerating computational algorithms and amplifying insights available from …
[HTML][HTML] Graph neural networks: A review of methods and applications
Lots of learning tasks require dealing with graph data which contains rich relation
information among elements. Modeling physics systems, learning molecular fingerprints …
information among elements. Modeling physics systems, learning molecular fingerprints …
Toward causal representation learning
The two fields of machine learning and graphical causality arose and are developed
separately. However, there is, now, cross-pollination and increasing interest in both fields to …
separately. However, there is, now, cross-pollination and increasing interest in both fields to …
E (n) equivariant graph neural networks
This paper introduces a new model to learn graph neural networks equivariant to rotations,
translations, reflections and permutations called E (n)-Equivariant Graph Neural Networks …
translations, reflections and permutations called E (n)-Equivariant Graph Neural Networks …
Graph learning: A survey
Graphs are widely used as a popular representation of the network structure of connected
data. Graph data can be found in a broad spectrum of application domains such as social …
data. Graph data can be found in a broad spectrum of application domains such as social …
Object-centric learning with slot attention
Learning object-centric representations of complex scenes is a promising step towards
enabling efficient abstract reasoning from low-level perceptual features. Yet, most deep …
enabling efficient abstract reasoning from low-level perceptual features. Yet, most deep …
Intuitive physics learning in a deep-learning model inspired by developmental psychology
Abstract 'Intuitive physics' enables our pragmatic engagement with the physical world and
forms a key component of 'common sense'aspects of thought. Current artificial intelligence …
forms a key component of 'common sense'aspects of thought. Current artificial intelligence …
Physics-informed machine learning: A survey on problems, methods and applications
Recent advances of data-driven machine learning have revolutionized fields like computer
vision, reinforcement learning, and many scientific and engineering domains. In many real …
vision, reinforcement learning, and many scientific and engineering domains. In many real …
How neural networks extrapolate: From feedforward to graph neural networks
We study how neural networks trained by gradient descent extrapolate, ie, what they learn
outside the support of the training distribution. Previous works report mixed empirical results …
outside the support of the training distribution. Previous works report mixed empirical results …
Hamiltonian neural networks
S Greydanus, M Dzamba… - Advances in neural …, 2019 - proceedings.neurips.cc
Even though neural networks enjoy widespread use, they still struggle to learn the basic
laws of physics. How might we endow them with better inductive biases? In this paper, we …
laws of physics. How might we endow them with better inductive biases? In this paper, we …