Towards continual reinforcement learning: A review and perspectives

K Khetarpal, M Riemer, I Rish, D Precup - Journal of Artificial Intelligence …, 2022 - jair.org
In this article, we aim to provide a literature review of different formulations and approaches
to continual reinforcement learning (RL), also known as lifelong or non-stationary RL. We …

Naturalistic reinforcement learning

T Wise, K Emery, A Radulescu - Trends in Cognitive Sciences, 2024 - cell.com
Humans possess a remarkable ability to make decisions within real-world environments that
are expansive, complex, and multidimensional. Human cognitive computational …

A survey of meta-reinforcement learning

J Beck, R Vuorio, EZ Liu, Z ** rewards: A new approach of reward sha**
Y Hu, W Wang, H Jia, Y Wang… - Advances in …, 2020 - proceedings.neurips.cc
Reward sha** is an effective technique for incorporating domain knowledge into
reinforcement learning (RL). Existing approaches such as potential-based reward sha** …

On the expressivity of markov reward

D Abel, W Dabney, A Harutyunyan… - Advances in …, 2021 - proceedings.neurips.cc
Reward is the driving force for reinforcement-learning agents. This paper is dedicated to
understanding the expressivity of reward as a way to capture tasks that we would want an …

Meta-reward-net: Implicitly differentiable reward learning for preference-based reinforcement learning

R Liu, F Bai, Y Du, Y Yang - Advances in Neural …, 2022 - proceedings.neurips.cc
Abstract Setting up a well-designed reward function has been challenging for many
reinforcement learning applications. Preference-based reinforcement learning (PbRL) …

Discovering reinforcement learning algorithms

J Oh, M Hessel, WM Czarnecki, Z Xu… - Advances in …, 2020 - proceedings.neurips.cc
Reinforcement learning (RL) algorithms update an agent's parameters according to one of
several possible rules, discovered manually through years of research. Automating the …

Exploration in deep reinforcement learning: From single-agent to multiagent domain

J Hao, T Yang, H Tang, C Bai, J Liu… - … on Neural Networks …, 2023 - ieeexplore.ieee.org
Deep reinforcement learning (DRL) and deep multiagent reinforcement learning (MARL)
have achieved significant success across a wide range of domains, including game artificial …