Transformers in medical imaging: A survey
Following unprecedented success on the natural language tasks, Transformers have been
successfully applied to several computer vision problems, achieving state-of-the-art results …
successfully applied to several computer vision problems, achieving state-of-the-art results …
Transformers in medical image segmentation: A review
H **ao, L Li, Q Liu, X Zhu, Q Zhang - Biomedical Signal Processing and …, 2023 - Elsevier
Abstract Background and Objectives: Transformer is a model relying entirely on self-
attention which has a wide range of applications in the field of natural language processing …
attention which has a wide range of applications in the field of natural language processing …
Diffir: Efficient diffusion model for image restoration
Diffusion model (DM) has achieved SOTA performance by modeling the image synthesis
process into a sequential application of a denoising network. However, different from image …
process into a sequential application of a denoising network. However, different from image …
Maxim: Multi-axis mlp for image processing
Recent progress on Transformers and multi-layer perceptron (MLP) models provide new
network architectural designs for computer vision tasks. Although these models proved to be …
network architectural designs for computer vision tasks. Although these models proved to be …
Transforming medical imaging with Transformers? A comparative review of key properties, current progresses, and future perspectives
Transformer, one of the latest technological advances of deep learning, has gained
prevalence in natural language processing or computer vision. Since medical imaging bear …
prevalence in natural language processing or computer vision. Since medical imaging bear …
Vision Transformers in medical computer vision—A contemplative retrospection
Abstract Vision Transformers (ViTs), with the magnificent potential to unravel the information
contained within images, have evolved as one of the most contemporary and dominant …
contained within images, have evolved as one of the most contemporary and dominant …
Degradation-aware unfolding half-shuffle transformer for spectral compressive imaging
In coded aperture snapshot spectral compressive imaging (CASSI) systems, hyperspectral
image (HSI) reconstruction methods are employed to recover the spatial-spectral signal from …
image (HSI) reconstruction methods are employed to recover the spatial-spectral signal from …
The fully convolutional transformer for medical image segmentation
We propose a novel transformer model, capable of segmenting medical images of varying
modalities. Challenges posed by the fine-grained nature of medical image analysis mean …
modalities. Challenges posed by the fine-grained nature of medical image analysis mean …
Optimization-inspired cross-attention transformer for compressive sensing
By integrating certain optimization solvers with deep neural networks, deep unfolding
network (DUN) with good interpretability and high performance has attracted growing …
network (DUN) with good interpretability and high performance has attracted growing …
SafeGen: Mitigating Sexually Explicit Content Generation in Text-to-Image Models
Text-to-image (T2I) models, such as Stable Diffusion, have exhibited remarkable
performance in generating high-quality images from text descriptions in recent years …
performance in generating high-quality images from text descriptions in recent years …