[SÁCH][B] Рандомизированные алгоритмы оценивания и оптимизации при почти произвольных помехах

ОН Граничин, БТ Поляк - 2003 - elibrary.ru
В книге дается систематическое изложение теории эффективных последовательных
алгоритмов многомерной оптимизации и оценивания, дающих состоятельные оценки …

[SÁCH][B] Advanced process identification and control

E Ikonen, K Najim - 2001 - taylorfrancis.com
A presentation of techniques in advanced process modelling, identification, prediction, and
parameter estimation for the implementation and analysis of industrial systems. The authors …

[SÁCH][B] Self-learning control of finite Markov chains

AS Poznyak, K Najim, E Gomez-Ramirez - 2018 - taylorfrancis.com
Presents a number of new and potentially useful self-learning (adaptive) control algorithms
and theoretical as well as practical results for both unconstrained and constrained finite …

Non-parametric tuning of PID controllers

I Boiko - Non-parametric Tuning of PID Controllers: A Modified …, 2013 - Springer
Abstract In Chap. 2, further to Introduction, two approaches in controller tuning, parametric
and non-parametric, are considered. Non-parametric methods of tuning based on the …

[PDF][PDF] Soft computing in model-based predictive control

P Tatjewski, M Ławryńczuk - 2006 - zbc.uz.zgora.pl
The application of fuzzy reasoning techniques and neural network structures to model-
based predictive control (MPC) is studied. First, basic structures of MPC algorithms are …

Nonlinear model predictive control of a cutting process

P Potočnik, I Grabec - Neurocomputing, 2002 - Elsevier
Nonlinear model predictive control (MPC) of a simulated chaotic cutting process is
presented. The nonlinear MPC combines a neural-network model and a genetic-algorithm …

On-line tuning of a neural PID controller based on plant hybrid modeling

A Andrášik, A Mészáros, SF de Azevedo - Computers & Chemical …, 2004 - Elsevier
In this paper, a new control technique for nonlinear control based on hybrid neural modeling
is proposed. For neural network training, a variant of the well-known gradient steepest …

Adaptive neural PID control case study: Tubular chemical reactor

A Mészáros, A Rusnák, M Fikar - Computers & Chemical Engineering, 1999 - Elsevier
A new simple solution of deriving adaptive PID control based on artificial neural network
(ANN) policy is presented. The design problem consists of training of both, a recurrent and a …

Analysis of dynamic nonlinearity of flow control loop through modified relay test probing

I Boiko, S Sayedain - International Journal of Control, 2010 - Taylor & Francis
Most of the controller tuning methods in process control are based on linear models.
Through the development of a detail model of the actuator-pneumatic valve dynamics, we …

Receding horizon iterative dynamic programming with discrete time models

A Rusnak, M Fikar, MA Latifi, A Meszaros - Computers & Chemical …, 2001 - Elsevier
This contribution proposes a modified version of the Iterative Dynamic Programming (IDP)
method. Two main differences to the original method are introduced. The new algorithm …