Optical vegetation indices for monitoring terrestrial ecosystems globally

Y Zeng, D Hao, A Huete, B Dechant, J Berry… - Nature Reviews Earth & …, 2022 - nature.com
Vegetation indices (VIs), which describe remotely sensed vegetation properties such as
photosynthetic activity and canopy structure, are widely used to study vegetation dynamics …

[HTML][HTML] Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review

K Berger, M Machwitz, M Kycko, SC Kefauver… - Remote sensing of …, 2022 - Elsevier
Remote detection and monitoring of the vegetation responses to stress became relevant for
sustainable agriculture. Ongoing developments in optical remote sensing technologies have …

[PDF][PDF] Спутниковое картографирование растительного покрова России

СА Барталев, ВА Егоров, ВО Жарко, ЕА Лупян… - М.: ИКИ …, 2016 - researchgate.net
В работе представлен новый автоматизированный метод картографирования
растительного покрова на основе данных спутниковых наблюдений …

Remote sensing in field crop monitoring: A comprehensive review of sensor systems, data analyses and recent advances

E Omia, H Bae, E Park, MS Kim, I Baek, I Kabenge… - Remote Sensing, 2023 - mdpi.com
The key elements that underpin food security require the adaptation of agricultural systems
to support productivity increases while minimizing inputs and the adverse effects of climate …

Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions

K Berger, J Verrelst, JB Féret, Z Wang… - Remote Sensing of …, 2020 - Elsevier
Nitrogen (N) is considered as one of the most important plant macronutrients and proper
management of N therefore is a pre-requisite for modern agriculture. Continuous satellite …

[HTML][HTML] A review of neural networks in plant disease detection using hyperspectral data

K Golhani, SK Balasundram, G Vadamalai… - Information Processing …, 2018 - Elsevier
This paper reviews advanced Neural Network (NN) techniques available to process
hyperspectral data, with a special emphasis on plant disease detection. Firstly, we provide a …

Early detection of plant viral disease using hyperspectral imaging and deep learning

C Nguyen, V Sagan, M Maimaitiyiming… - Sensors, 2021 - mdpi.com
Early detection of grapevine viral diseases is critical for early interventions in order to
prevent the disease from spreading to the entire vineyard. Hyperspectral remote sensing …

Quantifying vegetation biophysical variables from imaging spectroscopy data: A review on retrieval methods

J Verrelst, Z Malenovský, C Van der Tol… - Surveys in …, 2019 - Springer
An unprecedented spectroscopic data stream will soon become available with forthcoming
Earth-observing satellite missions equipped with imaging spectroradiometers. This data …

Machine learning-based approaches for predicting SPAD values of maize using multi-spectral images

Y Guo, S Chen, X Li, M Cunha, S Jayavelu… - Remote sensing, 2022 - mdpi.com
Precisely monitoring the growth condition and nutritional status of maize is crucial for
optimizing agronomic management and improving agricultural production. Multi-spectral …

Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties–A review

J Verrelst, G Camps-Valls, J Muñoz-Marí… - ISPRS Journal of …, 2015 - Elsevier
Forthcoming superspectral satellite missions dedicated to land monitoring, as well as
planned imaging spectrometers, will unleash an unprecedented data stream. The …