Artificial intelligence for remote sensing data analysis: A review of challenges and opportunities

L Zhang, L Zhang - IEEE Geoscience and Remote Sensing …, 2022 - ieeexplore.ieee.org
Artificial intelligence (AI) plays a growing role in remote sensing (RS). Applications of AI,
particularly machine learning algorithms, range from initial image processing to high-level …

Deep learning for hyperspectral image classification: An overview

S Li, W Song, L Fang, Y Chen… - … on Geoscience and …, 2019 - ieeexplore.ieee.org
Hyperspectral image (HSI) classification has become a hot topic in the field of remote
sensing. In general, the complex characteristics of hyperspectral data make the accurate …

Spectral–spatial feature tokenization transformer for hyperspectral image classification

L Sun, G Zhao, Y Zheng, Z Wu - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
In hyperspectral image (HSI) classification, each pixel sample is assigned to a land-cover
category. In the recent past, convolutional neural network (CNN)-based HSI classification …

[HTML][HTML] Deep learning classifiers for hyperspectral imaging: A review

ME Paoletti, JM Haut, J Plaza, A Plaza - ISPRS Journal of Photogrammetry …, 2019 - Elsevier
Advances in computing technology have fostered the development of new and powerful
deep learning (DL) techniques, which have demonstrated promising results in a wide range …

Multi-feature fusion: Graph neural network and CNN combining for hyperspectral image classification

Y Ding, Z Zhang, X Zhao, D Hong, W Cai, C Yu, N Yang… - Neurocomputing, 2022 - Elsevier
Due to its impressive representation power, the graph convolutional network (GCN) has
attracted increasing attention in the hyperspectral image (HSI) classification. However, the …

[HTML][HTML] A survey: Deep learning for hyperspectral image classification with few labeled samples

S Jia, S Jiang, Z Lin, N Li, M Xu, S Yu - Neurocomputing, 2021 - Elsevier
With the rapid development of deep learning technology and improvement in computing
capability, deep learning has been widely used in the field of hyperspectral image (HSI) …

Attention-based adaptive spectral–spatial kernel ResNet for hyperspectral image classification

SK Roy, S Manna, T Song… - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
Hyperspectral images (HSIs) provide rich spectral–spatial information with stacked
hundreds of contiguous narrowbands. Due to the existence of noise and band correlation …

Feature extraction for hyperspectral imagery: The evolution from shallow to deep: Overview and toolbox

B Rasti, D Hong, R Hang, P Ghamisi… - … and Remote Sensing …, 2020 - ieeexplore.ieee.org
Hyperspectral images (HSIs) provide detailed spectral information through hundreds of
(narrow) spectral channels (also known as dimensionality or bands), which can be used to …

CNN-enhanced graph convolutional network with pixel-and superpixel-level feature fusion for hyperspectral image classification

Q Liu, L **ao, J Yang, Z Wei - IEEE Transactions on Geoscience …, 2020 - ieeexplore.ieee.org
Recently, the graph convolutional network (GCN) has drawn increasing attention in the
hyperspectral image (HSI) classification. Compared with the convolutional neural network …

Cascaded recurrent neural networks for hyperspectral image classification

R Hang, Q Liu, D Hong… - IEEE Transactions on …, 2019 - ieeexplore.ieee.org
By considering the spectral signature as a sequence, recurrent neural networks (RNNs)
have been successfully used to learn discriminative features from hyperspectral images …