A review of the application of deep learning in intelligent fault diagnosis of rotating machinery
Z Zhu, Y Lei, G Qi, Y Chai, N Mazur, Y An, X Huang - Measurement, 2023 - Elsevier
With the rapid development of industry, fault diagnosis plays a more and more important role
in maintaining the health of equipment and ensuring the safe operation of equipment. Due to …
in maintaining the health of equipment and ensuring the safe operation of equipment. Due to …
A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: Theories, applications and challenges
Abstract Deep Transfer Learning (DTL) is a new paradigm of machine learning, which can
not only leverage the advantages of Deep Learning (DL) in feature representation, but also …
not only leverage the advantages of Deep Learning (DL) in feature representation, but also …
Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain
Unsupervised cross-domain fault diagnosis of bearings has practical significance; however,
the existing studies still face some problems. For example, transfer diagnosis scenarios are …
the existing studies still face some problems. For example, transfer diagnosis scenarios are …
Fault diagnosis in rotating machines based on transfer learning: Literature review
With the emergence of machine learning methods, data-driven fault diagnosis has gained
significant attention in recent years. However, traditional data-driven diagnosis approaches …
significant attention in recent years. However, traditional data-driven diagnosis approaches …
Deep learning algorithms for rotating machinery intelligent diagnosis: An open source benchmark study
Rotating machinery intelligent diagnosis based on deep learning (DL) has gone through
tremendous progress, which can help reduce costly breakdowns. However, different …
tremendous progress, which can help reduce costly breakdowns. However, different …
A comprehensive review on convolutional neural network in machine fault diagnosis
With the rapid development of manufacturing industry, machine fault diagnosis has become
increasingly significant to ensure safe equipment operation and production. Consequently …
increasingly significant to ensure safe equipment operation and production. Consequently …
Applications of unsupervised deep transfer learning to intelligent fault diagnosis: A survey and comparative study
Recent progress on intelligent fault diagnosis (IFD) has greatly depended on deep
representation learning and plenty of labeled data. However, machines often operate with …
representation learning and plenty of labeled data. However, machines often operate with …
Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions
Intelligent fault detection and diagnosis, as an important approach, play a crucial role in
ensuring the stable, reliable and safe operation of rolling bearings, which is one of the most …
ensuring the stable, reliable and safe operation of rolling bearings, which is one of the most …
Application of recurrent neural network to mechanical fault diagnosis: A review
J Zhu, Q Jiang, Y Shen, C Qian, F Xu, Q Zhu - Journal of Mechanical …, 2022 - Springer
With the development of intelligent manufacturing and automation, the precision and
complexity of mechanical equipment are increasing, which leads to a higher requirement for …
complexity of mechanical equipment are increasing, which leads to a higher requirement for …
Machinery fault diagnosis based on domain adaptation to bridge the gap between simulation and measured signals
In intelligent fault diagnosis, the success of artificial intelligence (AI) models is highly
dependent on labeled training samples, which may not be obtained in real-world …
dependent on labeled training samples, which may not be obtained in real-world …