Diffusion models: A comprehensive survey of methods and applications

L Yang, Z Zhang, Y Song, S Hong, R Xu, Y Zhao… - ACM Computing …, 2023 - dl.acm.org
Diffusion models have emerged as a powerful new family of deep generative models with
record-breaking performance in many applications, including image synthesis, video …

Foundation models for time series analysis: A tutorial and survey

Y Liang, H Wen, Y Nie, Y Jiang, M **, D Song… - Proceedings of the 30th …, 2024 - dl.acm.org
Time series analysis stands as a focal point within the data mining community, serving as a
cornerstone for extracting valuable insights crucial to a myriad of real-world applications …

[PDF][PDF] Timesnet: Temporal 2d-variation modeling for general time series analysis

H Wu, T Hu, Y Liu, H Zhou, J Wang, M Long - arxiv preprint arxiv …, 2022 - arxiv.org
Time series analysis is of immense importance in extensive applications, such as weather
forecasting, anomaly detection, and action recognition. This paper focuses on temporal …

Are transformers effective for time series forecasting?

A Zeng, M Chen, L Zhang, Q Xu - … of the AAAI conference on artificial …, 2023 - ojs.aaai.org
Recently, there has been a surge of Transformer-based solutions for the long-term time
series forecasting (LTSF) task. Despite the growing performance over the past few years, we …

Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting

Y Zhang, J Yan - The eleventh international conference on learning …, 2023 - openreview.net
Recently many deep models have been proposed for multivariate time series (MTS)
forecasting. In particular, Transformer-based models have shown great potential because …

Non-stationary transformers: Exploring the stationarity in time series forecasting

Y Liu, H Wu, J Wang, M Long - Advances in Neural …, 2022 - proceedings.neurips.cc
Transformers have shown great power in time series forecasting due to their global-range
modeling ability. However, their performance can degenerate terribly on non-stationary real …

Transformers in time series: A survey

Q Wen, T Zhou, C Zhang, W Chen, Z Ma, J Yan… - arxiv preprint arxiv …, 2022 - arxiv.org
Transformers have achieved superior performances in many tasks in natural language
processing and computer vision, which also triggered great interest in the time series …

Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting

T Zhou, Z Ma, Q Wen, X Wang… - … on machine learning, 2022 - proceedings.mlr.press
Long-term time series forecasting is challenging since prediction accuracy tends to
decrease dramatically with the increasing horizon. Although Transformer-based methods …

Actionformer: Localizing moments of actions with transformers

CL Zhang, J Wu, Y Li - European Conference on Computer Vision, 2022 - Springer
Self-attention based Transformer models have demonstrated impressive results for image
classification and object detection, and more recently for video understanding. Inspired by …

Nhits: Neural hierarchical interpolation for time series forecasting

C Challu, KG Olivares, BN Oreshkin… - Proceedings of the …, 2023 - ojs.aaai.org
Recent progress in neural forecasting accelerated improvements in the performance of large-
scale forecasting systems. Yet, long-horizon forecasting remains a very difficult task. Two …