Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Noether symmetries for fractional generalized Birkhoffian systems in terms of classical and combined Caputo derivatives
Y Zhou, Y Zhang - Acta Mechanica, 2020 - Springer
In this paper, we research Noether's theorems of fractional generalized Birkhoffian systems
in terms of classical and combined Caputo derivatives. First, the generalized Pfaff–Birkhoff …
in terms of classical and combined Caputo derivatives. First, the generalized Pfaff–Birkhoff …
Noether's theorem for fractional Birkhoffian system of Herglotz type with time delay
JJ Ding, Y Zhang - Chaos, Solitons & Fractals, 2020 - Elsevier
Noether symmetry theorem of Herglotz type for time-delayed fractional Birkhoffian system
are studied. Firstly, based on the fractional derivative of Riemann-Liouville, the Herglotz …
are studied. Firstly, based on the fractional derivative of Riemann-Liouville, the Herglotz …
Noether symmetry and conserved quantity for fractional Birkhoffian mechanics and its applications
CJ Song, Y Zhang - Fractional Calculus and Applied Analysis, 2018 - degruyter.com
Noether theorem is an important aspect to study in dynamical systems. Noether symmetry
and conserved quantity for the fractional Birkhoffian system are investigated. Firstly …
and conserved quantity for the fractional Birkhoffian system are investigated. Firstly …
Lie symmetries and conserved quantities of the constraint mechanical systems on time scales
PP Cai, JL Fu, YX Guo - Reports on Mathematical Physics, 2017 - Elsevier
We introduce a new method to study Lie symmetries and conserved quantities of constraint
mechanical systems which include Lagrangian systems, nonconservative systems and …
mechanical systems which include Lagrangian systems, nonconservative systems and …
[PDF][PDF] A numerical solution of a fractional oscillator equation in a non-resisting medium with natural boundary conditions
T Blaszczyk - Rom. Rep. Phys, 2015 - rrp.nipne.ro
In this paper we propose a numerical solution of a fractional oscillator equation with natural
boundary conditions. A numerical scheme is presented to solve these equations. In the final …
boundary conditions. A numerical scheme is presented to solve these equations. In the final …
An optimal control approach to Herglotz variational problems
We address the generalized variational problem of Herglotz from an optimal control point of
view. Using the theory of optimal control, we derive a generalized Euler–Lagrange equation …
view. Using the theory of optimal control, we derive a generalized Euler–Lagrange equation …
[HTML][HTML] A counterexample to a Frederico–Torres fractional Noether-type theorem
A counterexample to a Frederico–Torres fractional Noether-type theorem - ScienceDirect Skip to
main contentSkip to article Elsevier logo Journals & Books Search RegisterSign in View PDF …
main contentSkip to article Elsevier logo Journals & Books Search RegisterSign in View PDF …
Research on rock creep characteristics based on the fractional calculus meshless method
G Peng, Z Chen, J Chen - Advances in Civil Engineering, 2018 - Wiley Online Library
The application of fractional calculus in the rheological problems has been widely accepted.
In this study, the constitutive relationship of the generalized Kelvin model based on fractional …
In this study, the constitutive relationship of the generalized Kelvin model based on fractional …
Higher-order variational problems of Herglotz type with time delay
We study, using an optimal control point of view, higher-order variational problems of
Herglotz type with time delay. Main results are higher-order Euler-Lagrange and DuBois …
Herglotz type with time delay. Main results are higher-order Euler-Lagrange and DuBois …
Noether's theorem for higher-order variational problems of Herglotz type
We approach higher-order variational problems of Herglotz type from an optimal control
point of view. Using optimal control theory, we derive a generalized Euler-Lagrange …
point of view. Using optimal control theory, we derive a generalized Euler-Lagrange …