Comprehensive survey on machine learning in vehicular network: Technology, applications and challenges

F Tang, B Mao, N Kato, G Gui - IEEE Communications Surveys …, 2021 - ieeexplore.ieee.org
Towards future intelligent vehicular network, the machine learning as the promising artificial
intelligence tool is widely researched to intelligentize communication and networking …

In-network machine learning using programmable network devices: A survey

C Zheng, X Hong, D Ding, S Vargaftik… - … Surveys & Tutorials, 2023 - ieeexplore.ieee.org
Machine learning is widely used to solve networking challenges, ranging from traffic
classification and anomaly detection to network configuration. However, machine learning …

Future intelligent and secure vehicular network toward 6G: Machine-learning approaches

F Tang, Y Kawamoto, N Kato, J Liu - Proceedings of the IEEE, 2019 - ieeexplore.ieee.org
As a powerful tool, the vehicular network has been built to connect human communication
and transportation around the world for many years to come. However, with the rapid growth …

Machine learning for 5G/B5G mobile and wireless communications: Potential, limitations, and future directions

ME Morocho-Cayamcela, H Lee, W Lim - IEEE access, 2019 - ieeexplore.ieee.org
Driven by the demand to accommodate today's growing mobile traffic, 5G is designed to be
a key enabler and a leading infrastructure provider in the information and communication …

Deep learning-based effective fine-grained weather forecasting model

P Hewage, M Trovati, E Pereira, A Behera - Pattern Analysis and …, 2021 - Springer
It is well-known that numerical weather prediction (NWP) models require considerable
computer power to solve complex mathematical equations to obtain a forecast based on …

A survey on multi‐output regression

H Borchani, G Varando, C Bielza… - … Reviews: Data Mining …, 2015 - Wiley Online Library
In recent years, a plethora of approaches have been proposed to deal with the increasingly
challenging task of multi‐output regression. This study provides a survey on state‐of‐the‐art …

Convex incremental extreme learning machine

GB Huang, L Chen - Neurocomputing, 2007 - Elsevier
Unlike the conventional neural network theories and implementations, Huang et
al.[Universal approximation using incremental constructive feedforward networks with …

Hybrid machine learning algorithm and statistical time series model for network-wide traffic forecast

T Ma, C Antoniou, T Toledo - Transportation Research Part C: Emerging …, 2020 - Elsevier
We propose a novel approach for network-wide traffic state prediction where the statistical
time series model ARIMA is used to postprocess the residuals out of the fundamental …

Support vector machines in engineering: an overview

S Salcedo‐Sanz, JL Rojo‐Álvarez… - … : Data Mining and …, 2014 - Wiley Online Library
This paper provides an overview of the support vector machine (SVM) methodology and its
applicability to real‐world engineering problems. Specifically, the aim of this study is to …

Multi-step-ahead time series prediction using multiple-output support vector regression

Y Bao, T **ong, Z Hu - Neurocomputing, 2014 - Elsevier
Accurate time series prediction over long future horizons is challenging and of great interest
to both practitioners and academics. As a well-known intelligent algorithm, the standard …