Vision-language pre-training: Basics, recent advances, and future trends
This monograph surveys vision-language pre-training (VLP) methods for multimodal
intelligence that have been developed in the last few years. We group these approaches …
intelligence that have been developed in the last few years. We group these approaches …
Self-supervised learning for videos: A survey
The remarkable success of deep learning in various domains relies on the availability of
large-scale annotated datasets. However, obtaining annotations is expensive and requires …
large-scale annotated datasets. However, obtaining annotations is expensive and requires …
Motiongpt: Human motion as a foreign language
Though the advancement of pre-trained large language models unfolds, the exploration of
building a unified model for language and other multimodal data, such as motion, remains …
building a unified model for language and other multimodal data, such as motion, remains …
Videomamba: State space model for efficient video understanding
Addressing the dual challenges of local redundancy and global dependencies in video
understanding, this work innovatively adapts the Mamba to the video domain. The proposed …
understanding, this work innovatively adapts the Mamba to the video domain. The proposed …
Internvideo2: Scaling foundation models for multimodal video understanding
We introduce InternVideo2, a new family of video foundation models (ViFM) that achieve the
state-of-the-art results in video recognition, video-text tasks, and video-centric dialogue. Our …
state-of-the-art results in video recognition, video-text tasks, and video-centric dialogue. Our …
Vid2seq: Large-scale pretraining of a visual language model for dense video captioning
In this work, we introduce Vid2Seq, a multi-modal single-stage dense event captioning
model pretrained on narrated videos which are readily-available at scale. The Vid2Seq …
model pretrained on narrated videos which are readily-available at scale. The Vid2Seq …
Long-clip: Unlocking the long-text capability of clip
Abstract Contrastive Language-Image Pre-training (CLIP) has been the cornerstone for zero-
shot classification, text-image retrieval, and text-image generation by aligning image and …
shot classification, text-image retrieval, and text-image generation by aligning image and …
Moviechat: From dense token to sparse memory for long video understanding
Recently integrating video foundation models and large language models to build a video
understanding system can overcome the limitations of specific pre-defined vision tasks. Yet …
understanding system can overcome the limitations of specific pre-defined vision tasks. Yet …
Multimodal learning with transformers: A survey
Transformer is a promising neural network learner, and has achieved great success in
various machine learning tasks. Thanks to the recent prevalence of multimodal applications …
various machine learning tasks. Thanks to the recent prevalence of multimodal applications …