Neuro-inspired computing chips

W Zhang, B Gao, J Tang, P Yao, S Yu, MF Chang… - Nature …, 2020 - nature.com
The rapid development of artificial intelligence (AI) demands the rapid development of
domain-specific hardware specifically designed for AI applications. Neuro-inspired …

Memory devices and applications for in-memory computing

A Sebastian, M Le Gallo, R Khaddam-Aljameh… - Nature …, 2020 - nature.com
Traditional von Neumann computing systems involve separate processing and memory
units. However, data movement is costly in terms of time and energy and this problem is …

Training spiking neural networks using lessons from deep learning

JK Eshraghian, M Ward, EO Neftci… - Proceedings of the …, 2023 - ieeexplore.ieee.org
The brain is the perfect place to look for inspiration to develop more efficient neural
networks. The inner workings of our synapses and neurons provide a glimpse at what the …

Advancing neuromorphic computing with loihi: A survey of results and outlook

M Davies, A Wild, G Orchard… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Deep artificial neural networks apply principles of the brain's information processing that led
to breakthroughs in machine learning spanning many problem domains. Neuromorphic …

2022 roadmap on neuromorphic computing and engineering

DV Christensen, R Dittmann… - Neuromorphic …, 2022 - iopscience.iop.org
Modern computation based on von Neumann architecture is now a mature cutting-edge
science. In the von Neumann architecture, processing and memory units are implemented …

Pruning and quantization for deep neural network acceleration: A survey

T Liang, J Glossner, L Wang, S Shi, X Zhang - Neurocomputing, 2021 - Elsevier
Deep neural networks have been applied in many applications exhibiting extraordinary
abilities in the field of computer vision. However, complex network architectures challenge …

11 TOPS photonic convolutional accelerator for optical neural networks

X Xu, M Tan, B Corcoran, J Wu, A Boes, TG Nguyen… - Nature, 2021 - nature.com
Convolutional neural networks, inspired by biological visual cortex systems, are a powerful
category of artificial neural networks that can extract the hierarchical features of raw data to …

Training high-performance low-latency spiking neural networks by differentiation on spike representation

Q Meng, M **ao, S Yan, Y Wang… - Proceedings of the …, 2022 - openaccess.thecvf.com
Abstract Spiking Neural Network (SNN) is a promising energy-efficient AI model when
implemented on neuromorphic hardware. However, it is a challenge to efficiently train SNNs …

Temporal efficient training of spiking neural network via gradient re-weighting

S Deng, Y Li, S Zhang, S Gu - arxiv preprint arxiv:2202.11946, 2022 - arxiv.org
Recently, brain-inspired spiking neuron networks (SNNs) have attracted widespread
research interest because of their event-driven and energy-efficient characteristics. Still, it is …

Physics for neuromorphic computing

D Marković, A Mizrahi, D Querlioz, J Grollier - Nature Reviews Physics, 2020 - nature.com
Neuromorphic computing takes inspiration from the brain to create energy-efficient hardware
for information processing, capable of highly sophisticated tasks. Systems built with standard …