Re-thinking data strategy and integration for artificial intelligence: concepts, opportunities, and challenges

A Aldoseri, KN Al-Khalifa, AM Hamouda - Applied Sciences, 2023 - mdpi.com
The use of artificial intelligence (AI) is becoming more prevalent across industries such as
healthcare, finance, and transportation. Artificial intelligence is based on the analysis of …

Ai alignment: A comprehensive survey

J Ji, T Qiu, B Chen, B Zhang, H Lou, K Wang… - arxiv preprint arxiv …, 2023 - arxiv.org
AI alignment aims to make AI systems behave in line with human intentions and values. As
AI systems grow more capable, so do risks from misalignment. To provide a comprehensive …

Should chatgpt be biased? challenges and risks of bias in large language models

E Ferrara - arxiv preprint arxiv:2304.03738, 2023 - arxiv.org
As the capabilities of generative language models continue to advance, the implications of
biases ingrained within these models have garnered increasing attention from researchers …

Weak-to-strong generalization: Eliciting strong capabilities with weak supervision

C Burns, P Izmailov, JH Kirchner, B Baker… - arxiv preprint arxiv …, 2023 - arxiv.org
Widely used alignment techniques, such as reinforcement learning from human feedback
(RLHF), rely on the ability of humans to supervise model behavior-for example, to evaluate …

[HTML][HTML] Bias in artificial intelligence algorithms and recommendations for mitigation

LH Nazer, R Zatarah, S Waldrip, JXC Ke… - PLOS digital …, 2023 - journals.plos.org
The adoption of artificial intelligence (AI) algorithms is rapidly increasing in healthcare. Such
algorithms may be shaped by various factors such as social determinants of health that can …

Six human-centered artificial intelligence grand challenges

O Ozmen Garibay, B Winslow, S Andolina… - … Journal of Human …, 2023 - Taylor & Francis
Widespread adoption of artificial intelligence (AI) technologies is substantially affecting the
human condition in ways that are not yet well understood. Negative unintended …

[HTML][HTML] How can we manage biases in artificial intelligence systems–A systematic literature review

PS Varsha - International Journal of Information Management Data …, 2023 - Elsevier
Artificial intelligence is similar to human intelligence, and robots in organisations always
perform human tasks. However, AI encounters a variety of biases during its operational …

Bias and unfairness in machine learning models: a systematic review on datasets, tools, fairness metrics, and identification and mitigation methods

TP Pagano, RB Loureiro, FVN Lisboa… - Big data and cognitive …, 2023 - mdpi.com
One of the difficulties of artificial intelligence is to ensure that model decisions are fair and
free of bias. In research, datasets, metrics, techniques, and tools are applied to detect and …

Trustworthy artificial intelligence: a review

D Kaur, S Uslu, KJ Rittichier, A Durresi - ACM computing surveys (CSUR …, 2022 - dl.acm.org
Artificial intelligence (AI) and algorithmic decision making are having a profound impact on
our daily lives. These systems are vastly used in different high-stakes applications like …

[LIBRO][B] Towards a standard for identifying and managing bias in artificial intelligence

R Schwartz, R Schwartz, A Vassilev, K Greene… - 2022 - view.ckcest.cn
As individuals and communities interact in and with an environment that is increasingly
virtual, they are often vulnerable to the commodification of their digital footprint. Concepts …