Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Graph neural networks
Graphs are flexible mathematical objects that can represent many entities and knowledge
from different domains, including in the life sciences. Graph neural networks (GNNs) are …
from different domains, including in the life sciences. Graph neural networks (GNNs) are …
Everything is connected: Graph neural networks
P Veličković - Current Opinion in Structural Biology, 2023 - Elsevier
In many ways, graphs are the main modality of data we receive from nature. This is due to
the fact that most of the patterns we see, both in natural and artificial systems, are elegantly …
the fact that most of the patterns we see, both in natural and artificial systems, are elegantly …
Graph neural networks for materials science and chemistry
Abstract Machine learning plays an increasingly important role in many areas of chemistry
and materials science, being used to predict materials properties, accelerate simulations …
and materials science, being used to predict materials properties, accelerate simulations …
A survey on oversmoothing in graph neural networks
Node features of graph neural networks (GNNs) tend to become more similar with the
increase of the network depth. This effect is known as over-smoothing, which we …
increase of the network depth. This effect is known as over-smoothing, which we …
Recipe for a general, powerful, scalable graph transformer
We propose a recipe on how to build a general, powerful, scalable (GPS) graph Transformer
with linear complexity and state-of-the-art results on a diverse set of benchmarks. Graph …
with linear complexity and state-of-the-art results on a diverse set of benchmarks. Graph …
[PDF][PDF] Nodeformer: A scalable graph structure learning transformer for node classification
Graph neural networks have been extensively studied for learning with interconnected data.
Despite this, recent evidence has revealed GNNs' deficiencies related to over-squashing …
Despite this, recent evidence has revealed GNNs' deficiencies related to over-squashing …
On over-squashing in message passing neural networks: The impact of width, depth, and topology
Abstract Message Passing Neural Networks (MPNNs) are instances of Graph Neural
Networks that leverage the graph to send messages over the edges. This inductive bias …
Networks that leverage the graph to send messages over the edges. This inductive bias …
Attending to graph transformers
Recently, transformer architectures for graphs emerged as an alternative to established
techniques for machine learning with graphs, such as (message-passing) graph neural …
techniques for machine learning with graphs, such as (message-passing) graph neural …
A comprehensive survey on deep graph representation learning
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …
structured data into low-dimensional dense vectors, which is a fundamental task that has …
Graph inductive biases in transformers without message passing
Transformers for graph data are increasingly widely studied and successful in numerous
learning tasks. Graph inductive biases are crucial for Graph Transformers, and previous …
learning tasks. Graph inductive biases are crucial for Graph Transformers, and previous …