Integration of IoT-enabled technologies and artificial intelligence (AI) for smart city scenario: recent advancements and future trends
As the global population grows, and urbanization becomes more prevalent, cities often
struggle to provide convenient, secure, and sustainable lifestyles due to the lack of …
struggle to provide convenient, secure, and sustainable lifestyles due to the lack of …
Reinforcement learning for selective key applications in power systems: Recent advances and future challenges
With large-scale integration of renewable generation and distributed energy resources,
modern power systems are confronted with new operational challenges, such as growing …
modern power systems are confronted with new operational challenges, such as growing …
[HTML][HTML] Maintenance optimization in industry 4.0
This work reviews maintenance optimization from different and complementary points of
view. Specifically, we systematically analyze the knowledge, information and data that can …
view. Specifically, we systematically analyze the knowledge, information and data that can …
Deep reinforcement learning in production systems: a systematic literature review
Shortening product development cycles and fully customisable products pose major
challenges for production systems. These not only have to cope with an increased product …
challenges for production systems. These not only have to cope with an increased product …
Multi-agent reinforcement learning for active voltage control on power distribution networks
This paper presents a problem in power networks that creates an exciting and yet
challenging real-world scenario for application of multi-agent reinforcement learning …
challenging real-world scenario for application of multi-agent reinforcement learning …
A review of graph neural networks and their applications in power systems
W Liao, B Bak-Jensen, JR Pillai… - Journal of Modern …, 2021 - ieeexplore.ieee.org
Deep neural networks have revolutionized many machine learning tasks in power systems,
ranging from pattern recognition to signal processing. The data in these tasks are typically …
ranging from pattern recognition to signal processing. The data in these tasks are typically …
Forecasting renewable energy generation with machine learning and deep learning: Current advances and future prospects
This article presents a review of current advances and prospects in the field of forecasting
renewable energy generation using machine learning (ML) and deep learning (DL) …
renewable energy generation using machine learning (ML) and deep learning (DL) …
[HTML][HTML] A systematic review of machine learning techniques related to local energy communities
In recent years, digitalisation has rendered machine learning a key tool for improving
processes in several sectors, as in the case of electrical power systems. Machine learning …
processes in several sectors, as in the case of electrical power systems. Machine learning …
A comprehensive review of security-constrained unit commitment
Security-constrained unit commitment (SCUC) has been extensively studied as a key
decision-making tool to determine optimal power generation schedules in the operation of …
decision-making tool to determine optimal power generation schedules in the operation of …
Deep learning in smart grid technology: A review of recent advancements and future prospects
The current electric power system witnesses a significant transition into Smart Grids (SG) as
a promising landscape for high grid reliability and efficient energy management. This …
a promising landscape for high grid reliability and efficient energy management. This …