Bandgap engineering of two-dimensional semiconductor materials
Semiconductors are the basis of many vital technologies such as electronics, computing,
communications, optoelectronics, and sensing. Modern semiconductor technology can trace …
communications, optoelectronics, and sensing. Modern semiconductor technology can trace …
Layered materials as a platform for quantum technologies
Layered materials are taking centre stage in the ever-increasing research effort to develop
material platforms for quantum technologies. We are at the dawn of the era of layered …
material platforms for quantum technologies. We are at the dawn of the era of layered …
Quantum photonics with layered 2D materials
Solid-state quantum devices use quantum entanglement for various quantum technologies,
such as quantum computation, encryption, communication and sensing. Solid-state …
such as quantum computation, encryption, communication and sensing. Solid-state …
2D materials for quantum information science
The transformation of digital computers from bulky machines to portable systems has been
enabled by new materials and advanced processing technologies that allow ultrahigh …
enabled by new materials and advanced processing technologies that allow ultrahigh …
Synthesis, modulation, and application of two-dimensional TMD heterostructures
R Wu, H Zhang, H Ma, B Zhao, W Li, Y Chen… - Chemical …, 2024 - ACS Publications
Two-dimensional (2D) transition metal dichalcogenide (TMD) heterostructures have
attracted a lot of attention due to their rich material diversity and stack geometry, precise …
attracted a lot of attention due to their rich material diversity and stack geometry, precise …
Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K
In recent years, quantum-dot-like single-photon emitters in atomically thin van der Waals
materials have become a promising platform for future on-chip scalable quantum light …
materials have become a promising platform for future on-chip scalable quantum light …
Tunable optical properties of 2D materials and their applications
Recent efforts have been heavily devoted to the development of next‐generation
optoelectronic devices based on 2D materials, due to their unique optical properties that are …
optoelectronic devices based on 2D materials, due to their unique optical properties that are …
Imaging strain-localized excitons in nanoscale bubbles of monolayer WSe2 at room temperature
In monolayer transition-metal dichalcogenides, localized strain can be used to design
nanoarrays of single photon sources. Despite strong empirical correlation, the nanoscale …
nanoarrays of single photon sources. Despite strong empirical correlation, the nanoscale …
Strain-tuning of the electronic, optical, and vibrational properties of two-dimensional crystals
The variegated family of two-dimensional (2D) crystals has developed rapidly since the
isolation of its forerunner: Graphene. Their planeconfined nature is typically associated with …
isolation of its forerunner: Graphene. Their planeconfined nature is typically associated with …
Straining techniques for strain engineering of 2D materials towards flexible straintronic applications
Straintronics of two-dimensional (2D) materials offers enormous promise for both
fundamental research and smart technologies. Strain engineering of 2D materials has …
fundamental research and smart technologies. Strain engineering of 2D materials has …