Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Artificial intelligence applied to battery research: hype or reality?
T Lombardo, M Duquesnoy, H El-Bouysidy… - Chemical …, 2021 - ACS Publications
This is a critical review of artificial intelligence/machine learning (AI/ML) methods applied to
battery research. It aims at providing a comprehensive, authoritative, and critical, yet easily …
battery research. It aims at providing a comprehensive, authoritative, and critical, yet easily …
Machine learning: an advanced platform for materials development and state prediction in lithium‐ion batteries
C Lv, X Zhou, L Zhong, C Yan, M Srinivasan… - Advanced …, 2022 - Wiley Online Library
Lithium‐ion batteries (LIBs) are vital energy‐storage devices in modern society. However,
the performance and cost are still not satisfactory in terms of energy density, power density …
the performance and cost are still not satisfactory in terms of energy density, power density …
A critical review of machine learning of energy materials
Abstract Machine learning (ML) is rapidly revolutionizing many fields and is starting to
change landscapes for physics and chemistry. With its ability to solve complex tasks …
change landscapes for physics and chemistry. With its ability to solve complex tasks …
Machine learning assisted materials design and discovery for rechargeable batteries
Y Liu, B Guo, X Zou, Y Li, S Shi - Energy Storage Materials, 2020 - Elsevier
Abstract Machine learning plays an important role in accelerating the discovery and design
process for novel electrochemical energy storage materials. This review aims to provide the …
process for novel electrochemical energy storage materials. This review aims to provide the …
A review of the recent progress in battery informatics
C Ling - npj Computational Materials, 2022 - nature.com
Batteries are of paramount importance for the energy storage, consumption, and
transportation in the current and future society. Recently machine learning (ML) has …
transportation in the current and future society. Recently machine learning (ML) has …
Machine learning: accelerating materials development for energy storage and conversion
With the development of modern society, the requirement for energy has become
increasingly important on a global scale. Therefore, the exploration of novel materials for …
increasingly important on a global scale. Therefore, the exploration of novel materials for …
Machine learning for battery research
Batteries are vital energy storage carriers in industry and in our daily life. There is continued
interest in the developments of batteries with excellent service performance and safety …
interest in the developments of batteries with excellent service performance and safety …
Machine learning for renewable energy materials
Achieving the 2016 Paris agreement goal of limiting global warming below 2° C and
securing a sustainable energy future require materials innovations in renewable energy …
securing a sustainable energy future require materials innovations in renewable energy …
[HTML][HTML] Machine learning for advanced energy materials
The screening of advanced materials coupled with the modeling of their quantitative
structural-activity relationships has recently become one of the hot and trending topics in …
structural-activity relationships has recently become one of the hot and trending topics in …
Recent advances in artificial intelligence boosting materials design for electrochemical energy storage
In the rapidly evolving landscape of electrochemical energy storage (EES), the advent of
artificial intelligence (AI) has emerged as a keystone for innovation in material design …
artificial intelligence (AI) has emerged as a keystone for innovation in material design …