Multi-agent reinforcement learning: A selective overview of theories and algorithms

K Zhang, Z Yang, T Başar - Handbook of reinforcement learning and …, 2021 - Springer
Recent years have witnessed significant advances in reinforcement learning (RL), which
has registered tremendous success in solving various sequential decision-making problems …

[HTML][HTML] Applications of reinforcement learning in energy systems

ATD Perera, P Kamalaruban - Renewable and Sustainable Energy …, 2021 - Elsevier
Energy systems undergo major transitions to facilitate the large-scale penetration of
renewable energy technologies and improve efficiencies, leading to the integration of many …

Bilinear classes: A structural framework for provable generalization in rl

S Du, S Kakade, J Lee, S Lovett… - International …, 2021 - proceedings.mlr.press
Abstract This work introduces Bilinear Classes, a new structural framework, which permit
generalization in reinforcement learning in a wide variety of settings through the use of …

Bellman eluder dimension: New rich classes of rl problems, and sample-efficient algorithms

C **, Q Liu, S Miryoosefi - Advances in neural information …, 2021 - proceedings.neurips.cc
Finding the minimal structural assumptions that empower sample-efficient learning is one of
the most important research directions in Reinforcement Learning (RL). This paper …

The statistical complexity of interactive decision making

DJ Foster, SM Kakade, J Qian, A Rakhlin - arxiv preprint arxiv:2112.13487, 2021 - arxiv.org
A fundamental challenge in interactive learning and decision making, ranging from bandit
problems to reinforcement learning, is to provide sample-efficient, adaptive learning …

Nearly minimax optimal reinforcement learning for linear mixture markov decision processes

D Zhou, Q Gu, C Szepesvari - Conference on Learning …, 2021 - proceedings.mlr.press
We study reinforcement learning (RL) with linear function approximation where the
underlying transition probability kernel of the Markov decision process (MDP) is a linear …

A review of cooperative multi-agent deep reinforcement learning

A Oroojlooy, D Ha**ezhad - Applied Intelligence, 2023 - Springer
Abstract Deep Reinforcement Learning has made significant progress in multi-agent
systems in recent years. The aim of this review article is to provide an overview of recent …

Model-based reinforcement learning with value-targeted regression

A Ayoub, Z Jia, C Szepesvari… - … on Machine Learning, 2020 - proceedings.mlr.press
This paper studies model-based reinforcement learning (RL) for regret minimization. We
focus on finite-horizon episodic RL where the transition model $ P $ belongs to a known …

Policy finetuning: Bridging sample-efficient offline and online reinforcement learning

T **e, N Jiang, H Wang, C **ong… - Advances in neural …, 2021 - proceedings.neurips.cc
Recent theoretical work studies sample-efficient reinforcement learning (RL) extensively in
two settings: learning interactively in the environment (online RL), or learning from an offline …

Information-theoretic considerations in batch reinforcement learning

J Chen, N Jiang - International Conference on Machine …, 2019 - proceedings.mlr.press
Value-function approximation methods that operate in batch mode have foundational
importance to reinforcement learning (RL). Finite sample guarantees for these methods …