Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation
Influenced by the great success of deep learning in computer vision and language
understanding, research in recommendation has shifted to inventing new recommender …
understanding, research in recommendation has shifted to inventing new recommender …
Hyperbolic deep neural networks: A survey
Recently, hyperbolic deep neural networks (HDNNs) have been gaining momentum as the
deep representations in the hyperbolic space provide high fidelity embeddings with few …
deep representations in the hyperbolic space provide high fidelity embeddings with few …
FinalMLP: an enhanced two-stream MLP model for CTR prediction
Click-through rate (CTR) prediction is one of the fundamental tasks in online advertising and
recommendation. Multi-layer perceptron (MLP) serves as a core component in many deep …
recommendation. Multi-layer perceptron (MLP) serves as a core component in many deep …
Bagfn: broad attentive graph fusion network for high-order feature interactions
Modeling feature interactions is of crucial significance to high-quality feature engineering on
multifiled sparse data. At present, a series of state-of-the-art methods extract cross features …
multifiled sparse data. At present, a series of state-of-the-art methods extract cross features …
Autoint: Automatic feature interaction learning via self-attentive neural networks
Click-through rate (CTR) prediction, which aims to predict the probability of a user clicking
on an ad or an item, is critical to many online applications such as online advertising and …
on an ad or an item, is critical to many online applications such as online advertising and …
xdeepfm: Combining explicit and implicit feature interactions for recommender systems
Combinatorial features are essential for the success of many commercial models. Manually
crafting these features usually comes with high cost due to the variety, volume and velocity …
crafting these features usually comes with high cost due to the variety, volume and velocity …
Deep & cross network for ad click predictions
Feature engineering has been the key to the success of many prediction models. However,
the process is nontrivial and often requires manual feature engineering or exhaustive …
the process is nontrivial and often requires manual feature engineering or exhaustive …
Neural factorization machines for sparse predictive analytics
Many predictive tasks of web applications need to model categorical variables, such as user
IDs and demographics like genders and occupations. To apply standard machine learning …
IDs and demographics like genders and occupations. To apply standard machine learning …
Tensor methods in computer vision and deep learning
Tensors, or multidimensional arrays, are data structures that can naturally represent visual
data of multiple dimensions. Inherently able to efficiently capture structured, latent semantic …
data of multiple dimensions. Inherently able to efficiently capture structured, latent semantic …
Attentional factorization machines: Learning the weight of feature interactions via attention networks
Factorization Machines (FMs) are a supervised learning approach that enhances the linear
regression model by incorporating the second-order feature interactions. Despite …
regression model by incorporating the second-order feature interactions. Despite …