Social physics
Recent decades have seen a rise in the use of physics methods to study different societal
phenomena. This development has been due to physicists venturing outside of their …
phenomena. This development has been due to physicists venturing outside of their …
An overview of multi-agent reinforcement learning from game theoretical perspective
Y Yang, J Wang - arxiv preprint arxiv:2011.00583, 2020 - arxiv.org
Following the remarkable success of the AlphaGO series, 2019 was a booming year that
witnessed significant advances in multi-agent reinforcement learning (MARL) techniques …
witnessed significant advances in multi-agent reinforcement learning (MARL) techniques …
Foundational challenges in assuring alignment and safety of large language models
This work identifies 18 foundational challenges in assuring the alignment and safety of large
language models (LLMs). These challenges are organized into three different categories …
language models (LLMs). These challenges are organized into three different categories …
The surprising effectiveness of ppo in cooperative multi-agent games
Abstract Proximal Policy Optimization (PPO) is a ubiquitous on-policy reinforcement learning
algorithm but is significantly less utilized than off-policy learning algorithms in multi-agent …
algorithm but is significantly less utilized than off-policy learning algorithms in multi-agent …
Multi-agent deep reinforcement learning: a survey
The advances in reinforcement learning have recorded sublime success in various domains.
Although the multi-agent domain has been overshadowed by its single-agent counterpart …
Although the multi-agent domain has been overshadowed by its single-agent counterpart …
A survey of meta-reinforcement learning
While deep reinforcement learning (RL) has fueled multiple high-profile successes in
machine learning, it is held back from more widespread adoption by its often poor data …
machine learning, it is held back from more widespread adoption by its often poor data …
Theseus: A library for differentiable nonlinear optimization
We present Theseus, an efficient application-agnostic open source library for differentiable
nonlinear least squares (DNLS) optimization built on PyTorch, providing a common …
nonlinear least squares (DNLS) optimization built on PyTorch, providing a common …
Towards continual reinforcement learning: A review and perspectives
In this article, we aim to provide a literature review of different formulations and approaches
to continual reinforcement learning (RL), also known as lifelong or non-stationary RL. We …
to continual reinforcement learning (RL), also known as lifelong or non-stationary RL. We …
An introduction to deep reinforcement learning
Deep reinforcement learning is the combination of reinforcement learning (RL) and deep
learning. This field of research has been able to solve a wide range of complex …
learning. This field of research has been able to solve a wide range of complex …
Deep reinforcement learning for multiagent systems: A review of challenges, solutions, and applications
Reinforcement learning (RL) algorithms have been around for decades and employed to
solve various sequential decision-making problems. These algorithms, however, have faced …
solve various sequential decision-making problems. These algorithms, however, have faced …