Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Automatic speech recognition using advanced deep learning approaches: A survey
Recent advancements in deep learning (DL) have posed a significant challenge for
automatic speech recognition (ASR). ASR relies on extensive training datasets, including …
automatic speech recognition (ASR). ASR relies on extensive training datasets, including …
Challenges in deploying machine learning: a survey of case studies
In recent years, machine learning has transitioned from a field of academic research interest
to a field capable of solving real-world business problems. However, the deployment of …
to a field capable of solving real-world business problems. However, the deployment of …
Deep transfer learning for automatic speech recognition: Towards better generalization
Automatic speech recognition (ASR) has recently become an important challenge when
using deep learning (DL). It requires large-scale training datasets and high computational …
using deep learning (DL). It requires large-scale training datasets and high computational …
A review on transfer learning in EEG signal analysis
Electroencephalogram (EEG) signal analysis, which is widely used for human-computer
interaction and neurological disease diagnosis, requires a large amount of labeled data for …
interaction and neurological disease diagnosis, requires a large amount of labeled data for …
Transfer learning promotes 6G wireless communications: Recent advances and future challenges
M Wang, Y Lin, Q Tian, G Si - IEEE Transactions on Reliability, 2021 - ieeexplore.ieee.org
In the coming 6G communications, network densification, high throughput, positioning
accuracy, energy efficiency, and many other key performance indicator requirements are …
accuracy, energy efficiency, and many other key performance indicator requirements are …
Online learning: A comprehensive survey
Online learning represents a family of machine learning methods, where a learner attempts
to tackle some predictive (or any type of decision-making) task by learning from a sequence …
to tackle some predictive (or any type of decision-making) task by learning from a sequence …
Online transfer learning strategy for enhancing the scalability and deployment of deep reinforcement learning control in smart buildings
In recent years, advanced control strategies based on Deep Reinforcement Learning (DRL)
proved to be effective in optimizing the management of integrated energy systems in …
proved to be effective in optimizing the management of integrated energy systems in …
Can emotion be transferred?—A review on transfer learning for EEG-based emotion recognition
W Li, W Huan, B Hou, Y Tian, Z Zhang… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
The issue of electroencephalogram (EEG)-based emotion recognition has great academic
and practical significance. Currently, there are numerous research trying to address this …
and practical significance. Currently, there are numerous research trying to address this …
Convolutional neural networks for global human settlements map** from Sentinel-2 satellite imagery
Spatially consistent and up-to-date maps of human settlements are crucial for addressing
policies related to urbanization and sustainability, especially in the era of an increasingly …
policies related to urbanization and sustainability, especially in the era of an increasingly …
Deep transfer learning for industrial automation: A review and discussion of new techniques for data-driven machine learning
B Maschler, M Weyrich - IEEE Industrial Electronics Magazine, 2021 - ieeexplore.ieee.org
Deep learning has greatly increased the capabilities of" intelligent" technical systems over
the last years [1]. This includes the industrial automation sector [1]-[4], where new data …
the last years [1]. This includes the industrial automation sector [1]-[4], where new data …