Transformers in medical imaging: A survey

F Shamshad, S Khan, SW Zamir, MH Khan… - Medical image …, 2023 - Elsevier
Following unprecedented success on the natural language tasks, Transformers have been
successfully applied to several computer vision problems, achieving state-of-the-art results …

A comprehensive review of digital twin—part 1: modeling and twinning enabling technologies

A Thelen, X Zhang, O Fink, Y Lu, S Ghosh… - Structural and …, 2022 - Springer
As an emerging technology in the era of Industry 4.0, digital twin is gaining unprecedented
attention because of its promise to further optimize process design, quality control, health …

[PDF][PDF] Trustllm: Trustworthiness in large language models

L Sun, Y Huang, H Wang, S Wu, Q Zhang… - arxiv preprint arxiv …, 2024 - mosis.eecs.utk.edu
Large language models (LLMs), exemplified by ChatGPT, have gained considerable
attention for their excellent natural language processing capabilities. Nonetheless, these …

Adbench: Anomaly detection benchmark

S Han, X Hu, H Huang, M Jiang… - Advances in neural …, 2022 - proceedings.neurips.cc
Given a long list of anomaly detection algorithms developed in the last few decades, how do
they perform with regard to (i) varying levels of supervision,(ii) different types of anomalies …

Deep deterministic uncertainty: A new simple baseline

J Mukhoti, A Kirsch, J van Amersfoort… - Proceedings of the …, 2023 - openaccess.thecvf.com
Reliable uncertainty from deterministic single-forward pass models is sought after because
conventional methods of uncertainty quantification are computationally expensive. We take …

Out-of-distribution detection with deep nearest neighbors

Y Sun, Y Ming, X Zhu, Y Li - International Conference on …, 2022 - proceedings.mlr.press
Abstract Out-of-distribution (OOD) detection is a critical task for deploying machine learning
models in the open world. Distance-based methods have demonstrated promise, where …

Mitigating neural network overconfidence with logit normalization

H Wei, R **e, H Cheng, L Feng… - … conference on machine …, 2022 - proceedings.mlr.press
Detecting out-of-distribution inputs is critical for the safe deployment of machine learning
models in the real world. However, neural networks are known to suffer from the …

Clipn for zero-shot ood detection: Teaching clip to say no

H Wang, Y Li, H Yao, X Li - Proceedings of the IEEE/CVF …, 2023 - openaccess.thecvf.com
Abstract Out-of-distribution (OOD) detection refers to training the model on in-distribution (ID)
dataset to classify if the input images come from unknown classes. Considerable efforts …

Openood: Benchmarking generalized out-of-distribution detection

J Yang, P Wang, D Zou, Z Zhou… - Advances in …, 2022 - proceedings.neurips.cc
Abstract Out-of-distribution (OOD) detection is vital to safety-critical machine learning
applications and has thus been extensively studied, with a plethora of methods developed in …

Vim: Out-of-distribution with virtual-logit matching

H Wang, Z Li, L Feng, W Zhang - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Most of the existing Out-Of-Distribution (OOD) detection algorithms depend on single input
source: the feature, the logit, or the softmax probability. However, the immense diversity of …