AI in health and medicine

P Rajpurkar, E Chen, O Banerjee, EJ Topol - Nature medicine, 2022 - nature.com
Artificial intelligence (AI) is poised to broadly reshape medicine, potentially improving the
experiences of both clinicians and patients. We discuss key findings from a 2-year weekly …

Shifting machine learning for healthcare from development to deployment and from models to data

A Zhang, L **ng, J Zou, JC Wu - Nature Biomedical Engineering, 2022 - nature.com
In the past decade, the application of machine learning (ML) to healthcare has helped drive
the automation of physician tasks as well as enhancements in clinical capabilities and …

Evaluation and mitigation of the limitations of large language models in clinical decision-making

P Hager, F Jungmann, R Holland, K Bhagat… - Nature medicine, 2024 - nature.com
Clinical decision-making is one of the most impactful parts of a physician's responsibilities
and stands to benefit greatly from artificial intelligence solutions and large language models …

[HTML][HTML] Explainable artificial intelligence (XAI) in deep learning-based medical image analysis

BHM Van der Velden, HJ Kuijf, KGA Gilhuijs… - Medical Image …, 2022 - Elsevier
With an increase in deep learning-based methods, the call for explainability of such methods
grows, especially in high-stakes decision making areas such as medical image analysis …

Deep learning in histopathology: the path to the clinic

J Van der Laak, G Litjens, F Ciompi - Nature medicine, 2021 - nature.com
Abstract Machine learning techniques have great potential to improve medical diagnostics,
offering ways to improve accuracy, reproducibility and speed, and to ease workloads for …

[HTML][HTML] Survey of explainable artificial intelligence techniques for biomedical imaging with deep neural networks

S Nazir, DM Dickson, MU Akram - Computers in Biology and Medicine, 2023 - Elsevier
Artificial Intelligence (AI) techniques of deep learning have revolutionized the disease
diagnosis with their outstanding image classification performance. In spite of the outstanding …

Toward explainable artificial intelligence for precision pathology

F Klauschen, J Dippel, P Keyl… - Annual Review of …, 2024 - annualreviews.org
The rapid development of precision medicine in recent years has started to challenge
diagnostic pathology with respect to its ability to analyze histological images and …

[HTML][HTML] Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension

SC Rivera, X Liu, AW Chan, AK Denniston… - The Lancet Digital …, 2020 - thelancet.com
The SPIRIT 2013 statement aims to improve the completeness of clinical trial protocol
reporting by providing evidence-based recommendations for the minimum set of items to be …

Deep learning in cancer pathology: a new generation of clinical biomarkers

A Echle, NT Rindtorff, TJ Brinker, T Luedde… - British journal of …, 2021 - nature.com
Clinical workflows in oncology rely on predictive and prognostic molecular biomarkers.
However, the growing number of these complex biomarkers tends to increase the cost and …

Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension

X Liu, SC Rivera, D Moher, MJ Calvert… - The Lancet Digital …, 2020 - thelancet.com
The CONSORT 2010 statement provides minimum guidelines for reporting randomised
trials. Its widespread use has been instrumental in ensuring transparency in the evaluation …