Pore-scale modeling of complex transport phenomena in porous media

L Chen, A He, J Zhao, Q Kang, ZY Li… - Progress in Energy and …, 2022 - Elsevier
Porous media play important roles in a wide range of scientific and engineering problems.
Recently, with their increasing application in energy conversion and storage devices, such …

Mesoscopic and multiscale modelling in materials

J Fish, GJ Wagner, S Keten - Nature materials, 2021 - nature.com
The concept of multiscale modelling has emerged over the last few decades to describe
procedures that seek to simulate continuum-scale behaviour using information gleaned from …

Application of deep learning algorithms in geotechnical engineering: a short critical review

W Zhang, H Li, Y Li, H Liu, Y Chen, X Ding - Artificial Intelligence Review, 2021 - Springer
With the advent of big data era, deep learning (DL) has become an essential research
subject in the field of artificial intelligence (AI). DL algorithms are characterized with powerful …

Deep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitations

K Zhou, E Diehl, J Tang - Mechanical Systems and Signal Processing, 2023 - Elsevier
Fault detection and diagnosis of gear systems using vibration measurements play an
important role in ensuring their functional reliability and safety. Computational intelligence …

Ten years of generative adversarial nets (GANs): a survey of the state-of-the-art

T Chakraborty, UR KS, SM Naik, M Panja… - Machine Learning …, 2024 - iopscience.iop.org
Generative adversarial networks (GANs) have rapidly emerged as powerful tools for
generating realistic and diverse data across various domains, including computer vision and …

A state-of-the-art review on machine learning-based multiscale modeling, simulation, homogenization and design of materials

D Bishara, Y **e, WK Liu, S Li - Archives of computational methods in …, 2023 - Springer
Multiscale simulation and homogenization of materials have become the major
computational technology as well as engineering tools in material modeling and material …

Machine learning for data-driven discovery in solid Earth geoscience

KJ Bergen, PA Johnson, MV de Hoop, GC Beroza - Science, 2019 - science.org
BACKGROUND The solid Earth, oceans, and atmosphere together form a complex
interacting geosystem. Processes relevant to understanding Earth's geosystem behavior …

Deep learning methods for Reynolds-averaged Navier–Stokes simulations of airfoil flows

N Thuerey, K Weißenow, L Prantl, X Hu - AIAA journal, 2020 - arc.aiaa.org
This study investigates the accuracy of deep learning models for the inference of Reynolds-
averaged Navier–Stokes (RANS) solutions. This study focuses on a modernized U-net …

Generating three-dimensional structures from a two-dimensional slice with generative adversarial network-based dimensionality expansion

S Kench, SJ Cooper - Nature Machine Intelligence, 2021 - nature.com
Generative adversarial networks (GANs) can be trained to generate three-dimensional (3D)
image data, which are useful for design optimization. However, this conventionally requires …

Deep generative models in engineering design: A review

L Regenwetter, AH Nobari… - Journal of …, 2022 - asmedigitalcollection.asme.org
Automated design synthesis has the potential to revolutionize the modern engineering
design process and improve access to highly optimized and customized products across …