A tutorial on ultrareliable and low-latency communications in 6G: Integrating domain knowledge into deep learning

C She, C Sun, Z Gu, Y Li, C Yang… - Proceedings of the …, 2021 - ieeexplore.ieee.org
As one of the key communication scenarios in the fifth-generation and also the sixth-
generation (6G) mobile communication networks, ultrareliable and low-latency …

Applications of multi-agent reinforcement learning in future internet: A comprehensive survey

T Li, K Zhu, NC Luong, D Niyato, Q Wu… - … Surveys & Tutorials, 2022 - ieeexplore.ieee.org
Future Internet involves several emerging technologies such as 5G and beyond 5G
networks, vehicular networks, unmanned aerial vehicle (UAV) networks, and Internet of …

Multi-agent reinforcement learning based resource management in MEC-and UAV-assisted vehicular networks

H Peng, X Shen - IEEE Journal on Selected Areas in …, 2020 - ieeexplore.ieee.org
In this paper, we investigate multi-dimensional resource management for unmanned aerial
vehicles (UAVs) assisted vehicular networks. To efficiently provide on-demand resource …

Optimizing federated learning in distributed industrial IoT: A multi-agent approach

W Zhang, D Yang, W Wu, H Peng… - IEEE Journal on …, 2021 - ieeexplore.ieee.org
In this paper, we aim to make the best joint decision of device selection and computing and
spectrum resource allocation for optimizing federated learning (FL) performance in …

Joint secure offloading and resource allocation for vehicular edge computing network: A multi-agent deep reinforcement learning approach

Y Ju, Y Chen, Z Cao, L Liu, Q Pei… - IEEE Transactions …, 2023 - ieeexplore.ieee.org
The mobile edge computing (MEC) technology can simultaneously provide high-speed
computing services for multiple vehicular users (VUs) in vehicular edge computing (VEC) …

Split learning over wireless networks: Parallel design and resource management

W Wu, M Li, K Qu, C Zhou, X Shen… - IEEE Journal on …, 2023 - ieeexplore.ieee.org
Split learning (SL) is a collaborative learning framework, which can train an artificial
intelligence (AI) model between a device and an edge server by splitting the AI model into a …

Beyond deep reinforcement learning: A tutorial on generative diffusion models in network optimization

H Du, R Zhang, Y Liu, J Wang, Y Lin, Z Li… - arxiv preprint arxiv …, 2023 - arxiv.org
Generative Diffusion Models (GDMs) have emerged as a transformative force in the realm of
Generative Artificial Intelligence (GAI), demonstrating their versatility and efficacy across a …

Computation offloading and resource allocation in MEC-enabled integrated aerial-terrestrial vehicular networks: A reinforcement learning approach

N Waqar, SA Hassan, A Mahmood… - IEEE Transactions …, 2022 - ieeexplore.ieee.org
As important services of the future sixth-generation (6G) wireless networks, vehicular
communication and mobile edge computing (MEC) have received considerable interest in …

Mobility-aware cooperative caching in vehicular edge computing based on asynchronous federated and deep reinforcement learning

Q Wu, Y Zhao, Q Fan, P Fan, J Wang… - IEEE Journal of …, 2022 - ieeexplore.ieee.org
Vehicular edge computing (VEC) can learn and cache most popular contents for vehicular
users (VUs) in the roadside units (RSUs) to support real-time vehicular applications …

Survey on artificial intelligence (AI) techniques for vehicular ad-hoc networks (VANETs)

A Mchergui, T Moulahi, S Zeadally - Vehicular Communications, 2022 - Elsevier
Advances in communications, smart transportation systems, and computer systems have
recently opened up vast possibilities of intelligent solutions for traffic safety, convenience …