Evolutionary algorithm parameters and methods to tune them
Finding appropriate parameter values for evolutionary algorithms (EA) is one of the
persisting grand challenges of the evolutionary computing (EC) field. In general, EC …
persisting grand challenges of the evolutionary computing (EC) field. In general, EC …
Efficient relevance estimation and value calibration of evolutionary algorithm parameters
Calibrating the parameters of an evolutionary algorithm (EA) is a laborious task. The highly
stochastic nature of an EA typically leads to a high variance of the measurements. The …
stochastic nature of an EA typically leads to a high variance of the measurements. The …
[BOOK][B] Agent-based computational economics: How the idea originated and where it is going
SH Chen - 2017 - taylorfrancis.com
This book aims to answer two questions that are fundamental to the study of agent-based
economic models: what is agent-based computational economics and why do we need …
economic models: what is agent-based computational economics and why do we need …
A method for parameter calibration and relevance estimation in evolutionary algorithms
We present and evaluate a method for estimating the relevance and calibrating the values of
parameters of an evolutionary algorithm. The method provides an information theoretic …
parameters of an evolutionary algorithm. The method provides an information theoretic …
SPOT: An R package for automatic and interactive tuning of optimization algorithms by sequential parameter optimization
T Bartz-Beielstein - arxiv preprint arxiv:1006.4645, 2010 - arxiv.org
The sequential parameter optimization (SPOT) package for R is a toolbox for tuning and
understanding simulation and optimization algorithms. Model-based investigations are …
understanding simulation and optimization algorithms. Model-based investigations are …
Using entropy for parameter analysis of evolutionary algorithms
Evolutionary algorithms (EA) form a rich class of stochastic search methods that share the
basic principles of incrementally improving the quality of a set of candidate solutions by …
basic principles of incrementally improving the quality of a set of candidate solutions by …
Experimental analysis of optimization algorithms: Tuning and beyond
This chapter comprises the essence of several years of tutorials the authors gave on
experimental research in evolutionary computation. We highlight the renaissance of …
experimental research in evolutionary computation. We highlight the renaissance of …
Day ahead a electricity market analysis through a neuroevolution algorithm
The ongoing changes in deregulated electricity markets creates a need of new tools for the
analysis and simulation of electricity markets. The current paper proposes a new …
analysis and simulation of electricity markets. The current paper proposes a new …
[PDF][PDF] Analyse des Marchés d'électricité dérégulés avec les Méthodes Intelligentes
A Tiguercha - 2019 - dspace.usthb.dz
Résumé Dans ce travail, nous présentons une plate-forme basée sur les algorithmes
neuroévolutionnaires qui se base sur les systèmes multiagents afin d'analyser les …
neuroévolutionnaires qui se base sur les systèmes multiagents afin d'analyser les …
Prilagodljivi evolucijski algoritem za razporejanje proizvodnje v dinamičnem okolju
V Ogris - 2015 - search.proquest.com
V doktorski disertaciji obravnavamo problem razporejanja proizvodnje, ki v proizvodnih
podjetjih predstavlja enega glavnih problemov, saj lahko prihaja do vsakodnevnih …
podjetjih predstavlja enega glavnih problemov, saj lahko prihaja do vsakodnevnih …