Graph neural networks for materials science and chemistry

P Reiser, M Neubert, A Eberhard, L Torresi… - Communications …, 2022 - nature.com
Abstract Machine learning plays an increasingly important role in many areas of chemistry
and materials science, being used to predict materials properties, accelerate simulations …

Recent advances and applications of deep learning methods in materials science

K Choudhary, B DeCost, C Chen, A Jain… - npj Computational …, 2022 - nature.com
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …

Scaling deep learning for materials discovery

A Merchant, S Batzner, SS Schoenholz, M Aykol… - Nature, 2023 - nature.com
Novel functional materials enable fundamental breakthroughs across technological
applications from clean energy to information processing,,,,,,,,,–. From microchips to batteries …

The rise of high-entropy battery materials

B Ouyang, Y Zeng - nature communications, 2024 - nature.com
The emergence of high-entropy materials has inspired the exploration of novel materials in
diverse technologies. In electrochemical energy storage, high-entropy design has shown …

Representations of materials for machine learning

J Damewood, J Karaguesian, JR Lunger… - Annual Review of …, 2023 - annualreviews.org
High-throughput data generation methods and machine learning (ML) algorithms have
given rise to a new era of computational materials science by learning the relations between …

Machine learning for perovskite solar cells and component materials: key technologies and prospects

Y Liu, X Tan, J Liang, H Han, P **ang… - Advanced Functional …, 2023 - Wiley Online Library
Data‐driven epoch, the development of machine learning (ML) in materials and device
design is an irreversible trend. Its ability and efficiency to handle nonlinear and game …

Roadmap on machine learning in electronic structure

HJ Kulik, T Hammerschmidt, J Schmidt, S Botti… - Electronic …, 2022 - iopscience.iop.org
In recent years, we have been witnessing a paradigm shift in computational materials
science. In fact, traditional methods, mostly developed in the second half of the XXth century …

Applications of artificial intelligence and machine learning algorithms to crystallization

C **ouras, F Cameli, GL Quilló… - Chemical …, 2022 - ACS Publications
Artificial intelligence and specifically machine learning applications are nowadays used in a
variety of scientific applications and cutting-edge technologies, where they have a …

Data‐driven materials innovation and applications

Z Wang, Z Sun, H Yin, X Liu, J Wang, H Zhao… - Advanced …, 2022 - Wiley Online Library
Owing to the rapid developments to improve the accuracy and efficiency of both
experimental and computational investigative methodologies, the massive amounts of data …

A review of the recent progress in battery informatics

C Ling - npj Computational Materials, 2022 - nature.com
Batteries are of paramount importance for the energy storage, consumption, and
transportation in the current and future society. Recently machine learning (ML) has …