Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Automatic sleep staging of EEG signals: recent development, challenges, and future directions
Modern deep learning holds a great potential to transform clinical studies of human sleep.
Teaching a machine to carry out routine tasks would be a tremendous reduction in workload …
Teaching a machine to carry out routine tasks would be a tremendous reduction in workload …
Nonlinear independent component analysis for principled disentanglement in unsupervised deep learning
A central problem in unsupervised deep learning is how to find useful representations of
high-dimensional data, sometimes called" disentanglement." Most approaches are heuristic …
high-dimensional data, sometimes called" disentanglement." Most approaches are heuristic …
Decoding speech perception from non-invasive brain recordings
Decoding speech from brain activity is a long-awaited goal in both healthcare and
neuroscience. Invasive devices have recently led to major milestones in this regard: deep …
neuroscience. Invasive devices have recently led to major milestones in this regard: deep …
Self-supervised learning for electroencephalography
Decades of research have shown machine learning superiority in discovering highly
nonlinear patterns embedded in electroencephalography (EEG) records compared with …
nonlinear patterns embedded in electroencephalography (EEG) records compared with …
Augmentation-free self-supervised learning on graphs
Inspired by the recent success of self-supervised methods applied on images, self-
supervised learning on graph structured data has seen rapid growth especially centered on …
supervised learning on graph structured data has seen rapid growth especially centered on …
Self-supervised contrastive representation learning for semi-supervised time-series classification
Learning time-series representations when only unlabeled data or few labeled samples are
available can be a challenging task. Recently, contrastive self-supervised learning has …
available can be a challenging task. Recently, contrastive self-supervised learning has …
Contrastive learning of subject-invariant EEG representations for cross-subject emotion recognition
EEG signals have been reported to be informative and reliable for emotion recognition in
recent years. However, the inter-subject variability of emotion-related EEG signals still poses …
recent years. However, the inter-subject variability of emotion-related EEG signals still poses …
BENDR: Using transformers and a contrastive self-supervised learning task to learn from massive amounts of EEG data
Deep neural networks (DNNs) used for brain–computer interface (BCI) classification are
commonly expected to learn general features when trained across a variety of contexts, such …
commonly expected to learn general features when trained across a variety of contexts, such …
[HTML][HTML] Self-supervised representation learning from 12-lead ECG data
Abstract Clinical 12-lead electrocardiography (ECG) is one of the most widely encountered
kinds of biosignals. Despite the increased availability of public ECG datasets, label scarcity …
kinds of biosignals. Despite the increased availability of public ECG datasets, label scarcity …
A unified, scalable framework for neural population decoding
Our ability to use deep learning approaches to decipher neural activity would likely benefit
from greater scale, in terms of both the model size and the datasets. However, the …
from greater scale, in terms of both the model size and the datasets. However, the …