High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery

Y Yao, Q Dong, A Brozena, J Luo, J Miao, M Chi… - Science, 2022 - science.org
High-entropy nanoparticles have become a rapidly growing area of research in recent years.
Because of their multielemental compositions and unique high-entropy mixing states (ie …

Recent advances and applications of machine learning in solid-state materials science

J Schmidt, MRG Marques, S Botti… - npj computational …, 2019 - nature.com
One of the most exciting tools that have entered the material science toolbox in recent years
is machine learning. This collection of statistical methods has already proved to be capable …

Machine learning for alloys

GLW Hart, T Mueller, C Toher, S Curtarolo - Nature Reviews Materials, 2021 - nature.com
Alloy modelling has a history of machine-learning-like approaches, preceding the tide of
data-science-inspired work. The dawn of computational databases has made the integration …

Machine learning–enabled high-entropy alloy discovery

Z Rao, PY Tung, R **e, Y Wei, H Zhang, A Ferrari… - Science, 2022 - science.org
High-entropy alloys are solid solutions of multiple principal elements that are capable of
reaching composition and property regimes inaccessible for dilute materials. Discovering …

Small data machine learning in materials science

P Xu, X Ji, M Li, W Lu - npj Computational Materials, 2023 - nature.com
This review discussed the dilemma of small data faced by materials machine learning. First,
we analyzed the limitations brought by small data. Then, the workflow of materials machine …

Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties

T **e, JC Grossman - Physical review letters, 2018 - APS
The use of machine learning methods for accelerating the design of crystalline materials
usually requires manually constructed feature vectors or complex transformation of atom …

Machine learning in materials informatics: recent applications and prospects

R Ramprasad, R Batra, G Pilania… - npj Computational …, 2017 - nature.com
Propelled partly by the Materials Genome Initiative, and partly by the algorithmic
developments and the resounding successes of data-driven efforts in other domains …

Data‐driven materials science: status, challenges, and perspectives

L Himanen, A Geurts, AS Foster, P Rinke - Advanced Science, 2019 - Wiley Online Library
Data‐driven science is heralded as a new paradigm in materials science. In this field, data is
the new resource, and knowledge is extracted from materials datasets that are too big or …

Computational discovery of transition-metal complexes: from high-throughput screening to machine learning

A Nandy, C Duan, MG Taylor, F Liu, AH Steeves… - Chemical …, 2021 - ACS Publications
Transition-metal complexes are attractive targets for the design of catalysts and functional
materials. The behavior of the metal–organic bond, while very tunable for achieving target …

A critical review of machine learning of energy materials

C Chen, Y Zuo, W Ye, X Li, Z Deng… - Advanced Energy …, 2020 - Wiley Online Library
Abstract Machine learning (ML) is rapidly revolutionizing many fields and is starting to
change landscapes for physics and chemistry. With its ability to solve complex tasks …