Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
[HTML][HTML] Deep learning classifiers for hyperspectral imaging: A review
Advances in computing technology have fostered the development of new and powerful
deep learning (DL) techniques, which have demonstrated promising results in a wide range …
deep learning (DL) techniques, which have demonstrated promising results in a wide range …
Brain-inspired remote sensing interpretation: A comprehensive survey
Brain-inspired algorithms have become a new trend in next-generation artificial intelligence.
Through research on brain science, the intelligence of remote sensing algorithms can be …
Through research on brain science, the intelligence of remote sensing algorithms can be …
[HTML][HTML] A survey: Deep learning for hyperspectral image classification with few labeled samples
With the rapid development of deep learning technology and improvement in computing
capability, deep learning has been widely used in the field of hyperspectral image (HSI) …
capability, deep learning has been widely used in the field of hyperspectral image (HSI) …
Spatial-spectral transformer for hyperspectral image classification
Recently, a great many deep convolutional neural network (CNN)-based methods have
been proposed for hyperspectral image (HSI) classification. Although the proposed CNN …
been proposed for hyperspectral image (HSI) classification. Although the proposed CNN …
Residual spectral–spatial attention network for hyperspectral image classification
In the last five years, deep learning has been introduced to tackle the hyperspectral image
(HSI) classification and demonstrated good performance. In particular, the convolutional …
(HSI) classification and demonstrated good performance. In particular, the convolutional …
Spectral partitioning residual network with spatial attention mechanism for hyperspectral image classification
Hyperspectral image (HSI) classification is one of the most important tasks in hyperspectral
data analysis. Convolutional neural networks (CNN) have been introduced to HSI …
data analysis. Convolutional neural networks (CNN) have been introduced to HSI …
Hyperspectral image classification with attention-aided CNNs
Convolutional neural networks (CNNs) have been widely used for hyperspectral image
classification. As a common process, small cubes are first cropped from the hyperspectral …
classification. As a common process, small cubes are first cropped from the hyperspectral …
Spectral–spatial attention network for hyperspectral image classification
Hyperspectral image (HSI) classification aims to assign each hyperspectral pixel with a
proper land-cover label. Recently, convolutional neural networks (CNNs) have shown …
proper land-cover label. Recently, convolutional neural networks (CNNs) have shown …
[HTML][HTML] Improved transformer net for hyperspectral image classification
Y Qing, W Liu, L Feng, W Gao - Remote Sensing, 2021 - mdpi.com
In recent years, deep learning has been successfully applied to hyperspectral image
classification (HSI) problems, with several convolutional neural network (CNN) based …
classification (HSI) problems, with several convolutional neural network (CNN) based …
Feedback attention-based dense CNN for hyperspectral image classification
C Yu, R Han, M Song, C Liu… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Hyperspectral image classification (HSIC) methods based on convolutional neural network
(CNN) continue to progress in recent years. However, high complexity, information …
(CNN) continue to progress in recent years. However, high complexity, information …