Machine learning for alloys
Alloy modelling has a history of machine-learning-like approaches, preceding the tide of
data-science-inspired work. The dawn of computational databases has made the integration …
data-science-inspired work. The dawn of computational databases has made the integration …
Combining machine learning and computational chemistry for predictive insights into chemical systems
Machine learning models are poised to make a transformative impact on chemical sciences
by dramatically accelerating computational algorithms and amplifying insights available from …
by dramatically accelerating computational algorithms and amplifying insights available from …
Neural network potential energy surfaces for small molecules and reactions
We review progress in neural network (NN)-based methods for the construction of
interatomic potentials from discrete samples (such as ab initio energies) for applications in …
interatomic potentials from discrete samples (such as ab initio energies) for applications in …
Emerging materials intelligence ecosystems propelled by machine learning
The age of cognitive computing and artificial intelligence (AI) is just dawning. Inspired by its
successes and promises, several AI ecosystems are blossoming, many of them within the …
successes and promises, several AI ecosystems are blossoming, many of them within the …
Orbital-free density functional theory: An attractive electronic structure method for large-scale first-principles simulations
Kohn–Sham Density Functional Theory (KSDFT) is the most widely used electronic structure
method in chemistry, physics, and materials science, with thousands of calculations cited …
method in chemistry, physics, and materials science, with thousands of calculations cited …
Roadmap on machine learning in electronic structure
In recent years, we have been witnessing a paradigm shift in computational materials
science. In fact, traditional methods, mostly developed in the second half of the XXth century …
science. In fact, traditional methods, mostly developed in the second half of the XXth century …
[HTML][HTML] Perspective on integrating machine learning into computational chemistry and materials science
Machine learning (ML) methods are being used in almost every conceivable area of
electronic structure theory and molecular simulation. In particular, ML has become firmly …
electronic structure theory and molecular simulation. In particular, ML has become firmly …
Kohn-Sham equations as regularizer: Building prior knowledge into machine-learned physics
Including prior knowledge is important for effective machine learning models in physics and
is usually achieved by explicitly adding loss terms or constraints on model architectures …
is usually achieved by explicitly adding loss terms or constraints on model architectures …
Quantum machine learning for chemistry and physics
Machine learning (ML) has emerged as a formidable force for identifying hidden but
pertinent patterns within a given data set with the objective of subsequent generation of …
pertinent patterns within a given data set with the objective of subsequent generation of …
Neural functional theory for inhomogeneous fluids: Fundamentals and applications
We present a hybrid scheme based on classical density functional theory and machine
learning for determining the equilibrium structure and thermodynamics of inhomogeneous …
learning for determining the equilibrium structure and thermodynamics of inhomogeneous …